

Topic 6: Polynomial Equations

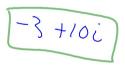
Exploring "Complex Numbers"

SAS3 - Question #2

2. Compute
$$(2+3i) - (5-7i)$$

= 2-5 +3i --7i

Adding and Subtracting Complex numbers is just like combining Like-Terms



Complex Numbers

A Complex Number is a combination of a Real Number and an Imaginary Number:

Standard Form of a Complex Number

If a=0, then you have an Imaginary Number: bi

If b=0, then you have a Real Number: a

Topic 6: Polynomial Equations

Exploring "Complex Numbers"

SAS3 - Question #3

Topic 6: Polynomial Equations

Agilemind website: Exploring "Complex Numbers" Page 3

Answers to SAS3 - Question #3

Topic 6: Polynomial Equations

Agilemind website: Exploring "Complex Numbers" Page 4

Since
$$i = \sqrt{-1}$$

$$i^2 = ?$$

$$i^2 = \left(\sqrt{-1}\right)^2 = -1$$

Whenever you see i² replace it with -1 and simplify

Topic 6: Polynomial Equations

Exploring "Complex Numbers"

SAS3 - Question #6

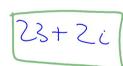
Topic 6: Polynomial Equations

Agilemind website: Exploring "Complex Numbers" Page 6

Answer to SAS3 - Question #6

Expand like you would normally expand the product of two binomials.

$$(3-2i)(5+4i)$$



3 -2i

Topic 6: Polynomial Equations

Exploring "Complex Numbers"

SAS3 - Question #7

The product of two Complex Numbers will be another Complex Number (unless they are conjugates)

In other words, it will never be a trinomial!

Simplify:
$$(6-i)^2 = (6-i)(6-i)$$

$$6-i)^2 = (6-i)(6-i)$$

$$6-i$$

$$3b-6i$$

$$-6i + 6i$$

$$-6i + 6i$$

Hwk #31

Agilemind Workbook and Website

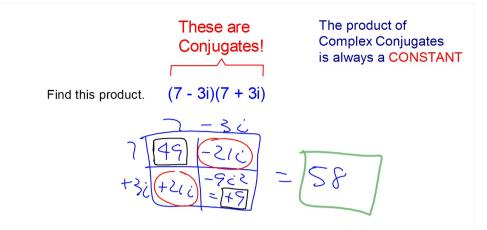
Topic 6: Polynomial Equations

Exploring "Quadratic Equations"

SAS3: questions 10 & 11 (Workbook)

and

More Practice 6-8 (Online)



			Process		
		i^0		1	
١		i^1		i	this pattern repeats
		i^2		-1	
		i^3	i² i	- i	
		i^4	じょうし=-じし=-じ	1	
		<i>i</i> ⁵	i'.i = 1.i	i	
		i^6	じょしまいしまし	-1	
		i^7	じし=-1・し	-i	
		<i>i</i> ⁸	17-1-1-12	1	

Simplify each power of i

$$\frac{19}{4 \cdot 19} = 4 \cdot \frac{4}{3}$$

$$\frac{10}{3} = 4 \Rightarrow \text{four full times through the pattern into the next pattern}$$

$$= i^{3} = -1$$