Topic 6: Polynomial Equations

SAS2 - Question #17

Agilemind website: Exploring "Quadratic Equations" Pages 10 & 11

Topic 6: Polynomial Equations

Exploring: "Quadratic Equations"

SAS2 - Question #18

Topic 6: Polynomial Equations

Agilemind website: Exploring "Quadratic Equations" Pages 10 & 11

Answer to SAS2 - Question #17

18. Fill in the blanks to complete the statement.

A *complex number* is a number that can be written in the form where *a* and *b* are real numbers.

Topic 6: Polynomial Equations

Exploring: "Quadratic Equations"

SAS2 - Question #19 a

Find ALL solutions, real and imaginary, using the Quadratic Formula. Round real answers to the nearest hundredth and simplify imaginary answers.

1.
$$x^{2} - 4x + 29 = 0$$

$$b^{2} - 4ac = -100$$

$$X = \frac{4 \pm \sqrt{-100}}{2}$$

$$X = \frac{4 \pm 10i}{2}$$

$$X = 2 \pm 5i$$

$$X = 2 \pm 105$$

$$X = 2 \pm 105$$

$$X = 2 \pm 105$$

Topic 6: Polynomial Equations

Agilemind website: Exploring "Quadratic Equations" Page 12

Answer to SAS2 #19a

discriminate

[dəˈskriməˌnāt] 🕬

VERB

recognize a distinction; differentiate.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

What part of the Quadratic Formula will determine whether there are Real Solutions or Imaginary Solutions?

$$b^2 - 4ac$$

This part of the Quadratic Formula is called the DISCRIMINANT

this part of the Quadratic Formula separates the solutions into Real and Imaginary

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The Quadratic Formula will lead to One Real solution if......

$$b^2 - 4ac = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The Quadratic Formula will lead to 2 Imaginary solutions if......

$$b^2 - 4ac < 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The Quadratic Formula will lead to 2 Real solutions if......

$$b^2 - 4ac > 0$$

Topic 6: Polynomial Equations

Agilemind website: Exploring "Quadratic Equations" Page 13

SAS2 - Question #20

$$4x^2 + 13x - 6 = 0$$

Without using a calculator what do you see in this equation tells us that it must have 2 Real Roots?

 Complete the table to represent the three possibilities for the solutions to quadra equations.

Discriminant	Number and type of root(s)	Example sketch
$b^2 - 4ac > 0$	Two real roots	8 6 W 2-2-2 2 X
$b^2 - 4ac = 0$	1 real root	$\begin{pmatrix} 2\\3\\0 \end{pmatrix}$
b ² – 4ac < 0	2 Complex (non-real) roots	2 -4 -2 2 4 3

$$ax^2 + bx + c = 0$$

 $b^2 - 4ac$ will ALWAYS be positive and thus, lead to 2 Real Solutions if....

Either a or c is negative.

On the previous page a was positive and c was negative, therefore, the Quadratic Formula will give us 2 Real Roots.

Hwk #30

Agilemind Workbook and Website

Topic 6: Polynomial Equations

Exploring "Quadratic Equations"

SAS2: questions 21 a-c (Workbook) and More Practice 1-4 (Online)

Topic 6: Polynomial Equations

Exploring "Complex Numbers"

SAS3 - Question #1

Topic 6: Polynomial Equations

Agilemind website: Exploring "Complex Numbers" Page 1

1. Using the answer choices provided, fill in the boxes in the diagram to label the types of numbers shown.

Complex Numbers

A Complex Number is a combination of a Real Number and an Imaginary Number:

Standard Form of a Complex Number

If a=0, then you have an Imaginary Number: bi

If b=0, then you have a Real Number: a

Topic 6: Polynomial Equations

Exploring "Complex Numbers"

SAS3 - Question #3

Topic 6: Polynomial Equations

Exploring "Complex Numbers"

SAS3 - Question #2

2. Compute

Adding and Subtracting Complex numbers is just like combining Like-Terms

Topic 6: Polynomial Equations

Agilemind website: Exploring "Complex Numbers" Page 3

Answers to SAS3 - Question #3