Topic 6: Polynomial Equations

Agilemind website: Exploring "Quadratic Equations" Page 6

SAS2 - Question #8 a,b

Topic 6: Polynomial Equations

Agilemind website: Exploring "Quadratic Equations" Page 6

SAS2 - Question #8 c

Since the parabola has no x-intercepts there must be no real solutions to the equation.

If you tried using the Quadratic Formula b²- 4ac= -16.

Solve. $(x+3)^2 - 16 = 0$

If a quadratic equation is in Vertex Form, you can solve the equation using Square Roots.

$$h(t) = -t^2 + 4t + 24$$

Suppose this equation models the height (as a function of time) of an object that is shot into the air from an initial height of 24ft.

Find the amount of time it would take to hit the ground?

$$0 = -\frac{2^{2}}{4} + \frac{4}{4} + \frac{24}{4}$$

$$a = -1$$

$$b^{2} - \frac{4}{4} = -\frac{1}{2}$$

$$b = 4$$

$$c = 24$$

$$t = -\frac{4 + \sqrt{112}}{-2}$$

$$t = -3.29 ? 7.29$$

Since negative time doesn't make sense in this situation the only answer is

$$(x+3)^{2} - 16 = 0$$

$$+ 16 + 16$$

$$(x+3)^{2} = \sqrt{16}$$

$$x+3 = \pm 4 - 3$$

$$-3$$

$$X = \begin{cases} +4-3 = 1 \\ -4-3 = -7 \end{cases}$$

$$X = -7, 1$$

Use this quadratic function: $0 = -x^2 + 4x + 24$

How could you write the quadratic in Vertex Form?

1st Find the Vertex
a. use LDS to find
$$x$$
-coord $x = \frac{-4}{2a} = \frac{-4}{2(-1)}$
b. Substitute $x = 2$ to find the $x = 2$

$$y - coord \quad y = -(2)^2 + 4(2) + 24 = 28$$
Vertex (2,28)
$$Q = -1 \text{ (same as } Q \text{ in Std Form)}$$
Vertex Form $Q = -(x-2)^2 + 28$

Since the equation is now in Vertex Form you could then choose to solve using Square Roots.

You can also use Square Roots to solve a Quadratic Equation when in Standard Form b=0

9. **REINFORCE** The height of a tomato dropped from 16 feet above the ground is given by the function $h(t) = -16t^2 + 16$. How long will it take for the tomato to hit the ground?

$$0 = -16t^{2} + 16$$

$$-16 \qquad -16$$

$$\frac{-16}{-16} = \frac{-16t^{2}}{-16}$$

$$\sqrt{1} = \sqrt{t^{2}} \qquad t = \pm 1$$

since t represents time in this situation and negative time doesn't make sense, the only answer is

h= 0

t = 1 sec

Topic 6: Polynomial Equations

Exploring: "Quadratic Equations"

SAS2 - Question #9

Hwk #29

Agilemind Workbook

Topic 6: Polynomial Equations

Exploring"Quadratic Equations"

SAS2: questions 10 a-d, 11, 12a,b