END BEHAVIOR

$$f(x) = x^2$$

Degree: Even

Leading Coefficient: +

End Behavior: Up Up 1

 $y \to \infty \ as \ x \to -\infty, y \to \infty \ as \ x \to \infty$

END BEHAVIOR

$$f(x) = x^3$$

End Behavior: Down Up /

 $y \to -\infty \ as \ x \to -\infty, y \to \infty \ as \ x \to \infty$

END BEHAVIOR

$$f(x) = -x^2$$

Degree: Even

End Behavior: Down Down / \

$$y \to -\infty$$
 as $x \to -\infty$, $y \to -\infty$ as $x \to \infty$

END BEHAVIOR

$$f(x) = -x^{2}$$

Leading Coefficient: -

End Behavior: Up Down

$$y \to \infty$$
 as $x \to -\infty$, $y \to -\infty$ as $x \to \infty$

Describe the end behavior of each polynomial.

1.
$$y = -8x^5 + 24x^3 - 11x^2 + 104$$

2.
$$f(x) = -7x^2(6 - x)^2(x - 5)^3(2x+3)$$

Topic 5: Analyzing Polynomial Functions

Overview page 1 Topic 5: SAS1 question 1

1.
$$y = -8x^5 + 24x^3 - 11x^2 + 104$$

this is a negative odd polynomial, therefore, its end behavior will mimic that of a line with a negative slope.

Up Down
as
$$x \to -\infty$$
, $y \to +\infty$
as $x \to +\infty$, $y \to -\infty$

2.
$$f(x) = -7x^{2}(6 - x)^{2}(x - 5)^{3}(2x+3)^{2}$$

- $(-)^{2}$ $(+)^{3}$ $(+)$

leading coefficient = (-)(+)(+)(+) = -

this is a negative even polynomial, therefore, its end behavior will mimic that of a parabola that opens down.

1. For each graph, what must be true about the values of the coefficients in the polynomial form to create the graph? [OV, page 1]

Topic 5: Analyzing Polynomial Functions Topic 5: Analyzing Polynomial Functions Overview page 2 Exploring "Concavity" page 1 A part of a polynomial on a certain interval Topic 5: Analyzing Polynomial Functions is described as being concave up. Exploring "Concavity" page 2 What do you think this could look like? example:

Topic 5: Analyzing Polynomial Functions

Exploring "Concavity" page 3

Topic 5: SAS2 question 2

Topic 5: Analyzing Polynomial Functions

Exploring "Concavity" pages 4 & 5

Interval Notation

Topic 5: SAS2 question 3

2. Define, in words and using a graph, the term inflection point.

where a graph changes concavity.

Sketch part of a polynomial that fits each description:

Increasing and Concave Up

2. Decreasing and Concave Up

3. Increasing and Concave Down

4. Decreasing and Concave Down

Topic 5: Analyzing Polynomial Functions

Exploring "Concavity" page 8

Topic 5: SAS2 question 5

Topic 5: Analyzing Polynomial Functions

Exploring "Concavity" page 10

Topic 5: SAS2 question 7 a,b

Hwk #23:

• Topic 5 - SAS2 Problem #8 a,b,c

AND

Agilemind website - Topic 4
 More Practice 1 & 3