
1. Write an equation for a 7th degree polynomial with the following distinct zeros: -4,0,3,5

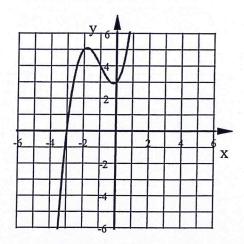
f(x) =

For 2 and 3 use the this scatter plot.

2. This function could be modeled with a _____ degree polynomial

whose leading coefficient is

3. Which equations seem like they could be used to model this data. Select all that apply.


A)
$$y = (x+1)(x+4)(x+6)$$

B)
$$y = x^3 - 10x^2 + 33x - 2$$

C)
$$y = (x-1)(x-4)(x-6)$$

D)
$$y = -x^3 + 8x^2 - 29x - 2$$

4. Use the function graphed below:

Which could be the polynomial shown in the graph?

A)
$$y = -x^3 + 3x^2 - 4x + 3$$

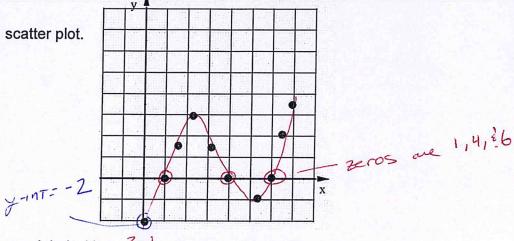
B)
$$y = x^3 + 3x^2 + x + 3$$

C)
$$y = x^3 - 2x^2 + x + 3$$

D)
$$y = x^3 + 3x^2 + x - 3$$

Bellwork Alg 2 Friday, November 8, 2019

ANSWERS


1. Write an equation for a 7th degree polynomial with the following distinct zeros: -4,0,3,5

HERE ARE 2 POSSIBLE ANSWERS - THERE ARE MORE POSSIBILITIES

f(x) =

X2(x+4)(x-3)(x+5) OR X4(x+4)(x-3)(x+5)

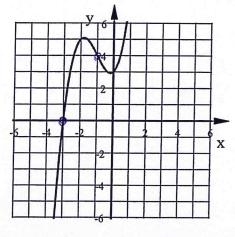
For 2 and 3 use the this scatter plot.

2. This function could be modeled with a 3rd degree polynomial

whose leading coefficient is POSITIVE

3. Which equations seem like they could be used to model this data. Select all that apply.

A) y = (x+1)(x+4)(x+6)Leros are -1, -4, \(\xi\)-6


- (B) $y = x^3 10x^2 + 33x 2$ pos cubic with y 10x + 2

(C) y = (x-1)(x-4)(x-6)

 $y = -x^{3} + 8x^{2} - 29x - 2$ NEG (4814

Zeros are 1,4, 26 => x-INT

4. Use the function graphed below:

- · positive cubic with y-191 = 3 ELIMINATES A & D
- · pick a point on the graph and test the coordinates in the equation (-3,0) or (-1,4)

Which could be the polynomial shown in the graph?

$$Ay y = -x^3 + 3x^2 - 4x + 3$$

B)
$$y = x^3 + 3x^2 + x + 3$$

B)
$$y = x^3 + 3x^2 + x + 3$$
 $(-1)^3 + 3(-1)^2 + (-1) + 3$ $= -1 + 3(1) - 1 + 3$ $= -1 + 3 - 1 + 3 = 4$

$$y = x^3 - 2x^2 + x + 3$$

$$(-1)^{\frac{3}{2}} - 2(-1)^2 + (-1) + 3$$

$$y = x^3 + 3x^2 + x - 3$$

$$= -1+3-1+3 = 4 V$$

=(-1)-2(1)-1+3= -1-2-1+3=-1