Bellwork Alg 2 Monday, November 4, 2019

Describe the end behavior of each polynomial.

1.
$$y = -8x^2 + 7x^3 - 2x + 14$$

2.
$$f(x) = 2x(4-3x)(5x+6)^2$$

3.
$$f(x) = -x^2(2x+9)(8-x)^2(4-7x)^3$$

- 4. Sketch the graph described below. Show all points of inflection, maximums, and minimums.
- -Decreasing and Concave Up on $(-\infty, -5)$
- -Decreasing and Concave Down on (-5, -3)
- -Decreasing and Concave Up on (-3, 1)
- -Increasing and Concave Up on (1,3)
- -Increasing and Concave Down on (3,5)
- -Decreasing and Concave Down on $(5,\infty)$

Bellwork Monday, November 4, 2019 Alg 2

Describe the end behavior of each polynomial.

[AnswERS]

NEGATIVE EVEN

- 3. $f(x) = -x^2(2x+9)(8-x)^2(4-7x)^3$ $(-x^2)(2x)(-x)^2(-7x)^3$ = $(-x^2)(2x)(x^2)(-343x^3)$ = 686x8 POSTITIVE EVEN (I) (up up) (y -> 00 as x -> ±00)
- 4. Sketch the graph described below. Show all points of inflection, maximums, and minimums.
- -Decreasing and Concave Up on $(-\infty, -5)$
- -Decreasing and Concave Down on (-5,-3)
- -Decreasing and Concave Up on (-3,1)
- -Increasing and Concave Up on (1,3)
- -Increasing and Concave Down on (3,5)
- -Decreasing and Concave Down on (5,∞)

