Bellwork

Alg 2

Monday, November 25, 2019

1. This following equation models the height of an object(ft) as a function of the amount of time(sec) after it has been launched upwards. Round answers to the nearest hundredth.

 $h(t) = -16t^2 + 96t + 6$

a) Find the time it takes to reach a height of 200 feet.

b) Find the time it takes to reach a height of 150 feet.

c) Find the time it takes to reach a height of 50 feet.

2. Simplify this product.

(7+2i)(5-3i)

Bellwork

Monday, November 25, 2019 Alg 2

AnswERS

1. This following equation models the height of an object(ft) as a function of the amount of time(sec) after it has been launched upwards. Round answers to the nearest hundredth.

$$h(t) = -16t^2 + 96t + 6$$

a) Find the time it takes to reach a height of 200 feet.

$$200 = -16t^{2} + 96t + 6$$

$$-200$$

$$0 = -16t^{2} + 96t - 194$$

b) Find the time it takes to reach a height of 150 feet.

$$h(t) = 150$$

$$150 = -16t^2 + 96t + 6$$

$$-150$$

$$50 = -16t^2 + 96t + 6$$

$$-150$$

$$0 = -16t^2 + 96t - 144$$

$$b^2-4ac = 0$$
 1 real Sol
 $t = \frac{-96\pm0}{-32} = \frac{-96}{-32} = 3$

The object will reach a ...

Neight of 150 ft one time

at t=35ec

c) Find the time it takes to reach a height of 50 feet.

$$h(t) = 50$$

$$50 = -16t^{2} + 96t + 6$$

$$-50$$

$$0 = -16t^{2} + 96t - 44$$

$$b^{2}-4ac = 6400 \quad 2 \text{ real Sols}$$

$$t = \frac{-96 \pm \sqrt{6400}}{-32}$$

$$t = 6.5 \pm 5.5$$

The object will reach a heig of 50ft twice, when t=0.5sx & when t=5.5 sec

2. Simplify this product. (7+2i)(5-3i)