

Algebra 2 Polynomial Application Problem Fall 2019

You have a 24" x 16" flat sheet of metal. You are going to cut squares of equal size from each corner of the sheet of metal then fold up the sides to create a box without a top. Your job is to find the dimensions of the squares to be removed from each corner that will create the maximum volume. See the diagrams below:

- 1. Write an expression for the Length of the box in terms of x: L=
- 2. Write an expression for the Width of the box in terms of x: W=
- 3. Write an expression for the Height of the box in terms of x: H =
- 4. Write an equation for the Volume of the box in terms of x. $(V = L \cdot W \cdot H)$
- a) Write the Volume equation in Factored Form:
- b) Write the Volume equation in Standard Form:
- 5. Find a good window on the graphing calculator to show all extremes. Sketch this graph below:

6. What part(s) of this graph make sense given what the equation represents?

7. a) If this volume equation didn't represent a real-life situation wha	t would the domain be?
b) What is the domain of the volume equation using the real-life situa	ition that it represents?
8. a) What is the maximum possible volume you can create? Round	I to the nearest hundredth.
o) What is the size of the square you'll remove from each corner in or volume? Round to the nearest hundredth.	der to create this maximum