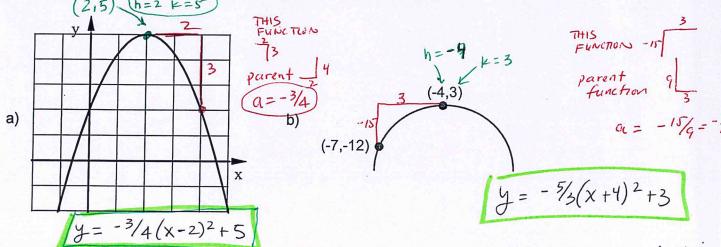

- 1. The function f(x) = 6|x + 4| 8. The function g(x) was created by transforming f(x) by translating it 3 units left, 7 units up and stretched vertically by a factor of $\frac{3}{2}$. What is the equation for g(x)?
- 2. Write the equation of each quadratic function in Vertex Form.

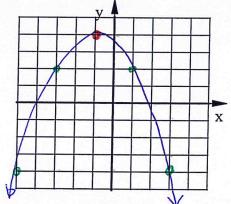
3. Graph this quadratic using five exact points. $y = -0.5(x+1)^2 + 4$

4. Complete the table of values for g(x) which was created by applying the following transformations to f(x): vertical shrink factor of $\frac{3}{4}$ and shifted up 10.

x	f(x)	g(x)
-3	19	
-1	7	
0	4	tirken 5
4	12	remount


Bellwork Alg 2 Hrs 5 & 6 Monday, October 14, 2019

AnswERS


1. The function f(x) = 6|x+4| - 8. The function g(x) was created by transforming f(x) by translating it 3 units left, 7 units up and stretched vertically by a factor of $\frac{3}{2}$. What is the equation for g(x)?

$$g(x) = \frac{3}{2} \cdot 6 | x + 4 + 3 | -8 + 7 \longrightarrow g(x) = 9 | x + 7 | -1$$
Smetch
VERTY(ALLY)

2. Write the equation of each quadratic function in Vertex Form. (2.5) h=2 k=5

3. Graph this quadratic using five exact points. $y = -0.5(x+1)^2 + 4$ i Lett 4 up x-axis reflection $\frac{1}{\sqrt{2}}$ as fall

IST PT	11 x (-,5) → 1 -,5 X
2nd pt	
3rd pr	$\frac{1}{3}9\times(-5) \rightarrow \frac{3}{1-4.5}\times$
4th pr	$\frac{1}{4} 16 \times (-5) \rightarrow \frac{4}{1-8}$

4. Complete the table of values for g(x) which was created by applying the following transformations to f(x): vertical shrink factor of $\frac{3}{4}$ and shifted up 10.

x	f(x)	g(x)
-3	19	97 = 24.25
-1	7	$\frac{61}{4} = 15.25$
0	4	13
4	12	19

$$g(x) = \frac{3}{4}f(x) + 10$$

$$g(-3) = \frac{3}{4}(19) + 10 = \frac{57}{4} + \frac{40}{4} = \frac{97}{4}$$

$$g(-1) = \frac{3}{4}(7) + 10 = \frac{21}{4} + \frac{40}{4} = \frac{60}{4}$$

$$g(0) = \frac{3}{4}(4) + 10 = \frac{3}{4}(12) + 10 = \frac{9}{4}(10) = \frac{19}{4}$$