

Teacher Version

Understanding inverse relations

Student Activity Sheet 4; Exploring "The quadratic function and its inverse"

Page 1 of 8

1. Study the given relationship between the height of the square array (n) and the number of painted faces (f). Then, complete the table. [EX3, page 2]

Height in cubes	Visual description	Written description	Process	Number of faces painted
1		A 1-by-1 array has 1 painted face.	$1 \cdot 1 = 1 \text{ or }$ $1^2 = 1$	1
2		A 2-by-2 array has 4 painted faces.	$2 \cdot 2 = 4 \text{ or }$ $2^2 = 4$	4
3		A 3-by-3 array has 9 painted faces.	$3 \cdot 3 = 9 \text{ or }$ $3^2 = 9$	9
4		A 4-by-4 array has 16 painted faces	$4 \cdot 4 = 16 \text{ or}$ $4^2 = 16$	16
5		A 5-by-5 array has 25 painted faces.	$5 \cdot 5 = 25 \text{ or}$ $5^2 = 25$	25
n		An n -by- n array has $n \cdot n$ painted faces.	$n \cdot n = n^2$	$f=n^2$

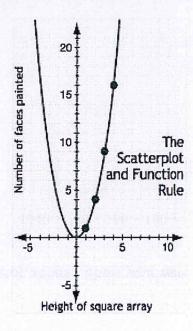
2. What type of function models the situation in question 1? How do you know? [EX3, page 3]

A quadratic function models the situation. The second differences in the y-values are all equal, and the first differences in the x-values are constant.

3. **REINFORCE** Could a quadratic function model the data in the table below? Justify your answer.

X		У	
-2	2	5	
-	1	0	7-5>4
C		-1	$\frac{1}{2}$ 4
1		2	$\frac{3}{4}$
2		9	7

Since a table is given, the best strategy is to find the differences in the x-values and in the y-values.


- The differences in the x-values are all 1.
- The first differences in the y-values are -5, -1, 3, 7.
- The second differences in the y-values are all 4.
 Since the second differences in the y-values are equal,
 the data in the table can be modeled by a quadratic function.

Understanding inverse relations

Student Activity Sheet 4; Exploring "The quadratic function and its inverse"

Page 2 of 8

4. Make a scatterplot that represents the data from the problem situation. Then sketch a complete graph of the function rule that models the problem situation. [EX3, page 4]

5. What name is given to the curve that is the graph of the function rule? [EX3, page 4]

The graph of the function rule is a parabola.

6. Compare the domain and range of the function rule to the domain and range of the problem situation. [EX3, page 4]

Function rule:

Domain: all real numbers (includes decimal values, such as 1.5) Range: $y \ge 0$ (includes decimal values; when x = 1.5, y = 2.25)

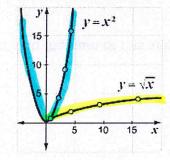
Problem situation:

Domain: positive whole numbers (The smallest array you can build is a 1-by-1.) Range: all values of x^2 such that x is a positive whole number (1^2 , 2^2 , 3^2 , etc.)

Understanding inverse relations


Student Activity Sheet 4; Exploring "The quadratic function and its inverse"

Page 3 of 8


7. Complete the table of the inverse relationship by treating the number of cube faces painted as the independent variable and the height of the array as the dependent variable. [EX3, page 5]

Number of faces painted	Height in cubes	
1	1	
4	2 3	
9		
16	4	
25	5	
36	6	
49	7	
n	\sqrt{n}	

8. Complete the table to show the inverse of the problem situation. Then graph the inverse relationship and both function rules. [EX3, page 6]

$x = y^2$	J'
1	1
4	2
9	3
16	4

