Take out the Student Activity Sheet (SAS) from yesterday.

Answer Questions 2 and 3 on Page 1 of SAS1

2. What rule describes the family of exponential functions?

$$y = a(b)^x$$

3. What is the quadratic parent function:

$$y = x^2$$

SAS pg 1

1. Some Key Characteristics of Linear, Exponential, and Quadratic Functions:

Linear Graph is a Line	Exponential Graph is a curve that inc OR decreases throughout.	Quadratic Graph is a Parabola
Largest Exponent = 1	Exponent is X	Largest Exponent = 2
Eq for Linear Family: y = mx + b Eq of Parent Linear	Eq for Exponential Family: y = a (b) ^x	Eq for Quadratic Family: y = ax² + bx + c
Function: y = x	Eq of Parent Exponential Function:	Eq of Parent Quadratic Function:
, ,	y = 2 ^x	y = x ²

Function: Below are some ways to think of what a function is:

- A function is a special relationship where each input produces a single output.
- In a function, one quantity depends on another in a consistent, and therefore predictable, way
- Give examples of two quantities that can be related to each other in a consistent, predictable way.

Animation on pg 1 of the Agile Mind website for Topic 1. (basketball shot)	is a parabola which way to the basket. path of a basketbal 2. How can a When you subs is going to happ 3. How can a In the case of the bas	function be used to make partitute values for the independent value (what the output is). I function by used to answer (weball, if the function predicts the looter you can answer questions su	of the basketball takes on its named model the location and predictions? Triable a function "predicts" what
pg 2 Agile Mind website	Compare the rates of change of linear, quadratic, and exponential functions: Rates of Change:		
	Linear	Exponential	Quadratic
Answer question #4 on Page 1 of SAS 1	Pattern of constar addition	t ● Pattern of constant multiplication	When x inc by a constant amount, the second difference in y is constant
	When x inc by a constant amount, y also inc by a constant amount	When x inc by a constant amount the first difference in y is exponential.	
		1	l

Animation on pg 1 of the Agile Mind website for Topic 1.

1. How can a function help you understand the basketball shot?

Pg 3 panel 1 of annimation on Agile Mind website

_	Figure	SAS 1 pg 3	Perimeter
	1	1 1	P = 3
	2		P = 4
	3		P= 5
	4		P = 6

This table of Perimeters demonstrates what type of sequence?

Arithmetic

d= 1

Figure number	Perimeter
1	3 units

Each short segment represents 1/3 of a the original side:

1/3 of a unit

Figure number	Perimeter	
1	3 units	
2	12/3 units	= 4

Perimeter = (12 segments) (13 unit)
= 12

Each short segment represents 1/3 of 1/3 = 1/9 of a the original side:

	Figure number	Perimeter		
	1	3 units		
	2	12/3 units	= 4	
	3	48/9 units	=16/3	
# sogments = 6 x 8 = 48 each segment is 1/9 of aunit				
Perimeter= 48(1/9)=48/9				

_	Figure	SAS 1 pg3	Perimeter	TI: (II (C) : (
	1	1 1	$P=3=\frac{3}{1}$	This table of Perimeters demonstrates what type of sequence?
			3 U	Geometric
_	2		$P = \frac{12}{3} = \frac{3}{1} \cdot \frac{4}{3}$	r= 4/3
	3	3 2	$P = 48/9 = \frac{12}{3} \cdot \frac{4}{3}$	What will be the perimeter
		****	<u> </u>	of the fifth Figure?
	4		$P = 192/27 = \frac{48}{9} \cdot \frac{4}{3}$	£5=£y.r
		John Strang) 3	$=\frac{192}{27}.\frac{4}{3}$
				27 3
				t 5 = 768
				81

Each short segment represents 1/3 of 1/3 of 1/3 = 1/27 of a the original side: 1/27 of a unit

of short & sogments = 16-12=192

each sogment is 1/27 of a unit

Perimeter= 192(1/27)

pg 4 of Overview on Agile Mind website

Answer Questions 7 and 8 on SAS 1 pg 3

7. Which of the function families you studied in Algebra 1 grows like an arithmetic sequence? Why? pg 5 of overview

LINEAR FAMILY

8. Which of the function families you studied in Algebra 1 grows like a geometric sequence? Why? pg 6 of overview

Exponential Family

Hwk #3: Questions 9 and 10 on SAS 1

pg 7 of Overview on Agile Mind website

Agile Mind URL:

https://dearborn.agilemind.com

Username & Password: Your DPS ID #