Agilemind - Topic 2 - Quadratics and their inverse

Page 1

What are the two variables in this situation?

the height of the array and the # faces painted

Which variable is the independent and which is the dependent?

Independent = height

Dependent = # faces painted

Why does the height of the array tell us everything we need to know about the size of the array?

Because the array is a square its size (area) is found by squaring the length of any one of its sides.

And the height gives us the length of a side.

SAS4 - Topic 2

Answer question #1

Agilemind - Topic 2 - Quadratics and their inverse

Page 2

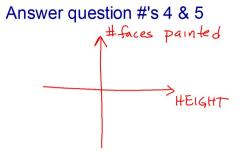
SAS4 - Topic 2 Answer question #3

3. **REINFORCE** Could a quadratic function model the data in the table below? Justify your

inswer.		1st 2nd difference
X	У	différence différence
-2	5	-5
-1	0	> 4
0	-1	7
1	2	2 3 < yes, 20 4
2	9	Jes, Be a must be a function
	Sind av	MUST BE a function auadratic function differences are differences constant constant

SAS4 - Topic 2 Answer question #2

		First	Second
height in cubes	# painted faces	Difference	Difference
1	1	>2	
2	4	()	> 2
3	9	<25 >	> 2
4	16		> 2
5	25	74/	_

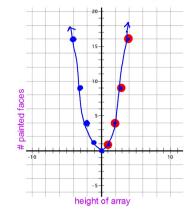

when there is a constant second difference the data can be modeled with a:

Quadratic Function

What would a graph of this situtation look like?

A parabola

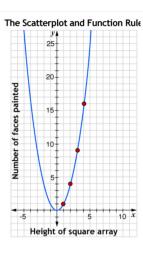
SAS4 - Topic 2


SAS4 - Topic 2

Answer question # 6

4. Make a scatterplot that represents the data from the problem situation. Then sketch a complete graph of the function rule that models the problem situation.

Problem Situation:


height in cubes	# painted faces
1	1
2	4
3	9
4	16
5	25

Function Rule:

Agilemind - Topic 2 - Quadratics and their inverse

Page 4

Function Rule: $y = x^2$

Domain:

Range:

All Real #'s (-∞,∞)

y ≥ 0 [0,∞)

Problem Situation:

Domain:

Range:

Counting Numbers Squares of the Counting Numbers

SAS4 - Topic 2

Answer question #7

What do you think the graph of the inverse relation will look like?

Sideways Darabola?

[a reflection of $y=x^2$ over the line y=x)

What do you think the function rule for the inverse will be?

Y=VX

Agilemind - Topic 2 - Quadratics and their inverse

Page 5

SAS4 - Topic 2

Answer question #8

Agilemind - Topic 2 - Quadratics and their inverse

Page 6

Function Rule for the Inverse of $y = x^2$

- 1. Start by switching x and y $x = y^2$
- 2. Then solve for y

$$y = \sqrt{x}$$

Since both the original function and the inverse can be written in y= form it can be confusing as to which one is the original and which one is the inverse.

Therefore, there is a symbol used to indicate the inverse:

Original Function:

$$y = x^2$$
or
$$f(x) = x^2$$

$$f^{-1}(x) = \sqrt{x}$$

the -1 isn't an exponent it's just a symbol used to indicate it is an inverse relation.

Graph $y = \sqrt{X}$

on the graphing calculator.

What is the Domain and Range?

y 1 x

Domain:

Range:

$$X \geq \emptyset$$

y 2 0

 $[0,\infty]$

Hwk #10: Topic 2 - SAS4 questions 9-11