Arithmetic Sequences:

Explicit Formula: $t_n = t_1 + d(n-1)$

Recursive Formula: $t_1 = \text{first term}$

 $t_n = t_{n-1} + d$

Aritmetic Series:

Sigma Notation: $\sum_{n=1}^{n} t_1 + d(n-1)$

Sum of n terms: $S_n = \frac{n}{2}(t_1 + t_n)$

le Mind Website: Topic 1 - Exploring - Geo seq/series pg1	Agile Mind Website: Topic 1 - Exploring - Geo seq/series pg2

Answer SAS3 - problem #2

Below are some possible "rules" to model this situation

Explicit Formula

Recursive Formula

Exponential Function

 $f(n) = 3500(0.7)^{n-1}$ f(1) = 3500 $f(n) = f(n-1) \cdot (0.7)$ $y = a \cdot b^{x}$ b = 0.7 $y = a \cdot (0.7)^{x}$

a isn't 3500 because in an exponential equation a represents the y-int (x=0) and not when x=1(the 1st night). You can find a by using the point (1,3500) which is the revenue on the 1st night.

$$\frac{3500 = a(0.7)}{0.7}$$

$$a = 5000$$

$$y = 5000(0.7)^{x}$$