Measures of Variability:

- Range
- Interquartile range
- Standard Deviation

Gives an indication of how spread out the data is, or how much variation there is in the data.

Interquartile Range:

Upper Quartile - Lower Quartile

Gives a measure of how spread out the middle 50% is

Similar to Range is doesn't tell the whole story because it is found using only 2 data values.

Range: Max Value - Min Value

Gives a measure of the Spread in a data set

Range by itself doesn't describe the whole data set because it is found using only 2 data values.

Which would be more significant?

A small range OR A large range?

A smaller range means the data is packed closely together whereas when a range is large all you really know is that the min and max are far apart but you don't know where the remaining data is within that range.

Standard Deviation:

A measure of how much variation there is in a set of data.

Used by itself it doesn't tell you that much about a data set

Best used to compare sets of data

Standard Deviation is a measure of how far on average each data value is from the mean.

Bigger Standard Deviation means more variation

Large or small Standard Deviation?

Is there a little or a lot of variation in the data set?

Small: They are all "pretty" close to the center of the room and all about the same distance from the center.

Standard Deviation is similar to the average distance each person is from the center of the room

Large or small Standard Deviation?

Is there a little or a lot of variation in the data set?

Larger: Their distances from the center of the room vary more and are for the most part further away than the previous picture.

Symbol for Standard Deviation:

 σ

Lower case Sigma

Standard Deviation Formula:

$$\sigma = \sqrt{\frac{\sum (x - \overline{x})^2}{n}}$$

Using this set of numbers: 5, 6, 7, 9, 13, 15, 20, 23, 31, 40

Find the Standard Deviation using the graphing calculator. It's found on the same screen as the one used to find Mean (\bar{x}).

$$\sigma_{x} = 11.04$$

Population Standard Deviation: Uses all the data available - the Population.

These will also match what you get when:

matches the value from both the calculator and spreadsheet

Standard Deviation Calculator Link on my blog:

Population Standard Deviation - uses all of the data values

Standard Deviation:
Mostly used to compare two sets of data

Which set of data has more variation?

Set 1: 95, 100, 105, 110, 115, 120, 125, 130

 $\sigma = 11.456$

Set 2: 26, 27, 37, 39, 44, 50, 58, 61

 $\sigma = 12.224$

Set 2 has more variation because its Standard Deviation is larger

The greater the Standard Deviation the more variation there is in the set of data.

Which set of data has more variation?

Set A: 12, 17, 22, 27, 32, 37, 42, 47, 52, 57

Set B: 85, 78, 79, 83, 81, 84, 86, 75, 82, 81

Find the standard deviation of each set:

Set A:
$$\sigma_{x} = 14.36$$
 Set B: $\sigma_{x} = 3.2$

Set A has more variation because its Standard Deviation is larger

Write either a Sin or Cos equation for this graph. $\frac{13\pi}{12},11)$ Amp = 11-5=6MIDLINE: y=5If START AT $-\frac{\pi}{6}$;

upside down Sin eg.

phase $\frac{\pi}{3}$,5)

Period = $\frac{15\pi}{3}$ = $\frac{15\pi}{3}$ = $\frac{5\pi}{3}$ $\frac{15\pi}{3}$ = $\frac{15\pi}{3}$ = $\frac{5\pi}{3}$ = $\frac{5$

Which set of data has more variation?

Set 1: 5,6,8,10,13,15,19

Set 2: 48,50,51,53,56,57,60

Find the standard deviation of each set:

Set 1:
$$\sigma = 4.703$$
 Set 2: $\sigma = 3.959$

Set 1 has more variation because its Standard Deviation is larger

Find a positive coterminal angle. Give answer in radians.

$$\theta = \frac{-14\pi}{3}$$
 add 2π in the form $\frac{6\pi}{3}$ until θ becomes positive

$$0 - \frac{14\pi}{3} + \frac{6\pi}{3} = -\frac{8\pi}{3}$$

$$(2) - 8\pi + 6\pi = -2\pi$$

$$(3) - 2\pi + 6\pi = 4\pi$$

Evaluate to the nearest hundredth.

$$= \frac{1}{\sqrt{2\pi}} - -2.4/$$

make sure the calculator is in radian mode!

