Each morning you must decide what to wear. An outfit consists of a pair of shoes, a pair of pants, and a shirt.

You have the following to choose from:

3 pairs of shoes

5 pairs of pants

6 shirts

How many different outfits are possible?

A restaurant has the following menu choices:

+		
	Appetizers	Wings, Potato Skins, Onion Rings, Cheese Sticks
	Entrées	Chicken, Lamb, Steak, Burgers, Ham, Ribs
	Desserts	Ice Cream Cone, Cake, Pie, Cupcake, Brownie,
		Ice Cream Sundae

A dinner consists of one Appetizer, one Entrée, and one Dessert. Find the number of different dinners that are possible.

Multiplication Counting Principle:

multiplying the number of choices for each step

There are 5 people running a race. How many different ways can 1st through 5th place be awarded?

$$\frac{5}{5}$$
, $\frac{4}{5}$, $\frac{3}{5}$, $\frac{2}{5}$, $\frac{1}{5}$

Factorial:
$$5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = (20)$$

Factorial is usually used if you are arranging ALL of the available items.

There are 12 people on a basketball team and only 12 uniform numbers to pass out.

How many different ways can all 12 uniform numbers be passed out to the players?

$$\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{0R}$$

$$12! = \frac{479,001,600}{12}$$

Find each:

2.
$$\frac{8!}{5!}$$
=