
A lot of things in the real-world are cyclic (Periodic).

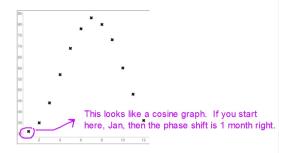
- Tides
- Temperatures
- Amount of Sunlight
- position of a piston in an engine

Average Montly Temperature Sydney, Australia

Make a scatter plot on the graphing calculator of this data.

L_1	L_2
Month	Average High Temp °F
Jan → 1	79.9 Max
Feb → 2	79.7
March → 3	78
April → 4	73.6
May → 5	68
June → 6	63.7
July → 7	62.4 Min
Aug → 8	65.1
Sept → 9	68.9
Oct → 10	72.7
Nov → 11	75.7
Dec → 12	78.6

period = 12. $b = 2\pi/period = 2\pi/12$ $(b = \pi/6)$

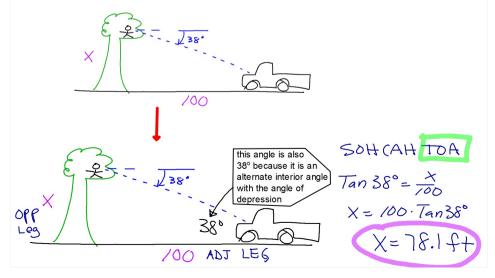

Phase shift: 1 month right

Since we choose a maximum to start at the graph is not upside down and a = +8.75

EQ: $y = 8.75Cos(\pi/6(x-1)) + 71.15$

L_1	L_2
Month	Average High Temp ° F
Jan → 1	31 Min
Feb → 2	35
March → 3	44
April → 4	57
May → 5	69
June → 6	78
July → 7	83 Max
Aug → 8	80
Sept → 9	73
Oct → 10	60
Nov → 11	48
Dec → 12	36

this temperature data repeats every 12 months so the period = 12. $b = 2\pi/period = 2\pi/12$ $(b = \pi/6)$


amplitude =
$$\frac{\text{Max - Min}}{2} = \frac{83 - 31}{2} = 26$$

Phase shift: 1 month right

Since we choose a minimum to start at the graph is upside down and a = -26

EQ: $y = -26Cos(\pi/6(x-1)) + 57$

A tree trimmer is up in a tree and sees his truck with an angle of depression of 38°. If his truck is parked 100 feet from the tree, how high up in the tree is he? Round to the nearest tenth.

