- To find find the value of a on a given graph all you need to know is the amplitude.
- If the cycle in your graph starts on the midline and goes up to a maximum a is Positive
- 3. If the cycle in your graph starts on the midline and goes down to a minimum a is Negative

Find the Amplitude and Period then figure out the values of a and b. Write the equation of this graph in the form y = aSinbx

EQ: Y=821n 3x

Amplitude = 8

graph Not Upside down

 $b = \frac{2\pi}{\text{Period}} = \frac{2\pi}{\frac{6\pi}{3}} = 2\pi \cdot \frac{3}{6\pi}$

Period =
$$\frac{8\pi}{3} = 8\pi \cdot \frac{2}{3} = \frac{16\pi}{3}$$

Using
$$y = asinbx$$
 Period $= \frac{2\pi}{b}$

Solving for b you get:
$$b = \frac{2\pi}{Period}$$

Therefore, to find the value of b given a graph all you need to know is the period.

Find the Amplitude and Period then figure out the values of a and b. Write the equation of this graph in the form y = aSinbx

Period = $\frac{13\pi}{\frac{5}{2}} = \frac{13\pi}{5} \cdot \frac{2}{5} = \frac{26\pi}{5}$

Find the Amplitude and Period then figure out the values of a and b. Write the equation of this graph in the form y = aSinbx

Amplitude = 7 graph is NOT upside down
$$a = 7$$

$$b = \frac{2\pi}{Period} = \frac{2\pi}{\frac{16\pi}{3}} = 2\pi \cdot \frac{3}{\frac{16\pi}{8}}$$

$$b = \frac{3}{8}$$

$$EQ: y = 7 \cdot \frac{5 \cdot n}{8}$$

Find the Amplitude and Period then figure out the values of a and b. Write the equation of this graph in the form y = aSinbx

$$b = \frac{2\pi}{\text{Period}} = \frac{2\pi}{\frac{28\pi}{9}} = 2\pi \cdot \frac{9}{28\pi}$$

$$b = \frac{9}{14}$$

$$EQ: \quad y = -4 \sin \frac{9x}{14}$$

Amplitude = 4 Graph is Upside Down

a = -4

Find the Amplitude and Period then figure out the values of a and b. Write the equation of this graph in the form y = aSinbx

You can now finish Hwk #18

Sec 13-4

Page 738

Problems 13, 14, 22, 23, 27 31, 32, 42

for #'s 22, 23, 27 label the coordinates of $\underline{\mathsf{ALL}}$ Max's, Min's, and x-int

Due Monday