

Graph of y = a sinbx Exploration

Part One











$$y = asinx$$

a = Amplitude (Vertical Stretch Factor)

Can you have a negative Amplitude?

No, since amplitude is a distance, it can't be negative.

If a<0 then there is an x-axis reflection. Upside down

## Now Do Part 2 of the Exploration.

## Remember:







| sinbx                         | Period                            |
|-------------------------------|-----------------------------------|
| sin <i>x</i>                  | $2\pi$                            |
| $\sin 2x$                     | $\frac{2\pi}{2} = \pi$            |
| $\sin \Delta x$               | $\frac{2\pi}{4} = \frac{\pi}{2}$  |
| $\sin \frac{x}{2} = \sin(2x)$ | $\frac{2\pi}{\frac{1}{2}} = 4\pi$ |

$$y = sinbx$$

Period = 
$$\frac{2\pi}{b}$$

Find the amplitude and period for each Sine Function:

1. 
$$y = 7 \sin 5x$$

Amplitude= 
$$\alpha = 1$$

Amplitude= 
$$\alpha = \gamma$$
 Amplitude=  $a = 4$ 

Period= 
$$\frac{2\pi}{5}$$

Period= 
$$\frac{2\pi}{V_3} = 2\pi \cdot \frac{3}{l} = 6\pi$$

## The Parent Function: y = Sinx



Period=  $2\pi$ 

Amplitude= 1

Eq of Midline: y = 0

## y = asinbx

a = Amplitude

a<0 is an x-axis reflection (upside down)

b: Period = 
$$\frac{2\pi}{b}$$

Sketch one period of the graph of

$$y = -5\sin\left(\frac{x}{2}\right) = -5\sin\left(\frac{1}{2}x\right)$$

Label the coordinates of all x-intercepts, minimums, and maximums.



