- State in which quadrant or on which axis the terminal side of each angle lies.

- 2. $\frac{312\pi}{23}$
- 3. 4770°
- 4. $\frac{352\pi}{9}$

- 5. 2623°
- 6. $\frac{113\pi}{2}$ 7. $\frac{194\pi}{2}$

- 8. A company that makes wildlife videos purchases camera equipment for \$32,400. The equipment depreciates in value at a constant rate for 12 years, after which it is considered to have no monetary value. How much is the camera equipment worth 4 years after it is purchased?
- A) \$10,800
- B) \$16,200
- C) \$21,600
- D) \$29,700

- 9. The expression $\frac{x^{-2}y^{\frac{1}{2}}}{x^{\frac{1}{3}}y^{-1}}$, where x > 1 and y > 1, is equivalent to which of the following?

- A) $\frac{\sqrt{y}}{\sqrt[3]{x^2}}$ B) $\frac{y\sqrt{y}}{\sqrt[3]{x^2}}$ C) $\frac{y\sqrt{y}}{x\sqrt{x}}$ D) $\frac{y\sqrt{y}}{x^2\sqrt[3]{x}}$

- 10. The expression $\frac{1}{3}x^2 2$ can be written as $\frac{1}{3}(x k)(x + k)$, where k is a positive constant. What is the value of k?
- A) 2
- B) 6 C) $\sqrt{2}$ D) $\sqrt{6}$

8. A company that makes wildlife videos purchases camera equipment for \$32,400. The equipment depreciates in value at a constant rate for 12 years, after which it is considered to have no monetary value. How much is the camera equipment worth 4 years after it is purchased? A) \$10,800 B) \$16,200 (C) \$21,600 D) \$29,700

$$X = amount of yearly depreciation$$

 $32,400 - 12X = 0$
 $32,400 = 12X$

6. $\frac{113\pi}{2}$

9. The expression $\frac{x^{-2}y^{\frac{1}{2}}}{x^{\frac{1}{3}}y^{-1}}$, where x > 1 and $y \ge 1$, is equivalent to which of the following?

A)
$$\frac{\sqrt{y}}{\sqrt[3]{x^2}}$$

5. 2623° COTERMINAL WITH 103°

$$B) \frac{y\sqrt{y}}{\sqrt[3]{x^2}}$$

C)
$$\frac{y\sqrt{y}}{x\sqrt{x}}$$

A)
$$\frac{\sqrt{y}}{\sqrt[3]{x^2}}$$
 B) $\frac{y\sqrt{y}}{\sqrt[3]{x^2}}$ C) $\frac{y\sqrt{y}}{x\sqrt{x}}$ D) $\frac{y\sqrt{y}}{x^2\sqrt[3]{x}}$

$$\frac{x^{2}y^{\frac{1}{2}}}{x^{\frac{1}{3}}y^{\frac{1}{3}}} = \frac{y \cdot y^{\frac{1}{2}}}{x^{2} \cdot x^{\frac{1}{3}}}$$

$$= \frac{y \cdot y}{x^{2}}$$

$$= \frac{y \cdot y}{x^{2}}$$

10. The expression $\frac{1}{3}x^2 - 2$ can be written as $\frac{1}{3}(x-k)(x+k)$, where k is a positive constant. What is the value of k?

$$\frac{1}{3}(x-k)(x+k)$$

$$= \frac{1}{3}(x^2-k^2)$$

$$= \frac{1}{3}(x^2-k^2)$$