the value of $(1 + 1/n)^n$ approaches **e** as n gets bigger and bigger:

n	$(1 + 1/n)^n$		
1	2.00000		
2	2.25000		
5	2.48832		
10	2.59374		
100	2.70481		
1,000	2.71692		
10,000	2.71815		
100,000	2.71827	\approx	е

The more often interest is calculated the more money you will earn.

What is the MOST often that you can calculate interest?

Continuously

Compounding Interest Continuously

Amount after tyears

$$y = Pe^{rt}$$

Annual Interest rate as a decimal Principal (initial Investment)

You invest \$20,000 in an account that pays 6% annual interest compounded CONTINUOUSLY. How much would you have after 25 years?

$$y = Pe^{rt}$$
 $y = 20,000 = .06 \times 25$
 $= $9,633.75$

Invest \$20,000 at 6% annual interest for 25 years:

with Simple Interest you'll have \$50,000

Compounding annually you'll have \$85,837.41

Compounding monthly you'll have \$89,299.39

Compounding continuously you'll have \$89,633.78

You invest \$10,000 in an account that pays 5% interest compounded continuously. How many years until you have \$20,000. Round to the nearest hundredth.

$$y = Pe^{rt}$$
 $\frac{20,000}{70,000} = \frac{10,000}{70,000} = \frac{(.05)t}{70,000}$
 $\frac{\log_{e} 2 = 0.05t}{0.05}$
 $\frac{\ln 2 = 0.05t}{0.05}$
 $t = 13.86 \text{ yrs}$

Solve to the nearest hundredth.

1.
$$6^{x} = 40$$

2.
$$e^{x} = 10$$
 $\log_{e} 10 = x = 2.30$

or

log_e = LN also written in lower case: log_e = In

log base e is called a: Natural Logarithm

$$ln10 = x = 2.30$$

You are now ready for the quiz over Chapter 8

Direct Variation is when x and y have a Constant Ratio.

$$k = \frac{y}{x}$$

Examples of a Direct Variation relationship:

• The relationship between the number of hours you work and the amount of your paycheck.

• The relationship between the weight of a bucket and the number of gallons of water in it.

The graph of Direct Variation is a line through the origin.

A Direct Variation Equation is: y = kx

k is called the variation constant. It's also the slope of the line. $k = \frac{y}{x}$

Direct Variation: When one quantity increases the other quantity also increases.

The table below is an example of Direct Variation:

Χ	Υ	$\frac{\gamma}{\varkappa}$
-4	-10	2.5
2	5	2.5
6	15	2.5
14	35	2.5

Variation Constant: k = 2.5

Equation: $y = 2.5 \times$

The table below isn't Direct Variation but has a different relationship between x and y. Can you find this relationship?

X	Υ	X·Y
-4	-6	24
1	24	24
2	12	24
3	8	24

X and Y have a constant product.

Inverse Variation is when two quantities have a constant product.

Variation Constant: k = xy

An Inverse Variation Equation: $y = \frac{k}{x}$

Inverse Variation: When one quantity increases

the other quantity decreases.