Solve each equation. Round to the nearest hundredth.

1.
$$15^{2x} = 8$$
 $\log_{15} 8 = 2x$

find
$$\log_{15} s$$
 and divide by 2
$$X = 0.38$$

2.
$$2^{x+7} = 101$$

$$log_{15} 8 = 2x$$
 $log_{101} = x + 7$
find $log_{15} 8$ and find log_{201} and divide by 2
$$X = 0.38$$

$$Subtract 7$$

$$X = -0.34$$

You can now finish Hwk #2.

Practice Sheet: Logarithms

You are also now ready for Quiz #1.

3.
$$5(7)^{4x+1} - 6 = 38$$

 $+6 + 6$
 $5(7)^{4x+1} = 44$
 $5(7)^{4x+1} = 5.8$
 $7^{4x+1} = 5.8$
 $\log_{7}(8.8) = 4x+1$

find
$$log_{1}(8.8)$$
 than subtract 1 and finish by dividing by 4 $X=0.03$

Solve to the nearest hundredth.

$$\log_2(x+1)=6$$

$$2^{6} = x + 1$$

 $6^{7} = x + 1$
 -1

Solve to the nearest hundredth.

$$\log_{x}(x+6)=2$$

$$x^{2} = x + 6$$

$$x^{2} - x - 6 = 0$$

$$(x - 3)(x + 2) = 0$$

$$x = 3, -x$$

$$x = 3, -x$$

What is e?

What is π ?

The number π is a mathematical constant. Originally defined as the ratio of a circle's circumference to its diameter, it now has various equivalent definitions and appears in many formulas in all areas of mathematics and physics

Simple Interest:

You only get paid interest on the initial investment no matter how long you leave your money in the account.

$$I = prt$$

You invest \$5000 at 6% annual interest for 10 years. How much will you have at the end of 10 years if you get simple interest?

rest?
$$I = 5000(0.06)(10) = $3000$$

TOTAL = $5000 + 3000 = 8000

Initial
Investment interest

Compounded Interest:

Interest is added to the initial investment then you get paid interest on that new total, etc...

You invest \$5000 at 6% annual interest for 10 years. How much will you have at the end of 10 years?

$$y = 5000(1.06)^{10}$$

 $y = 8954.24

The following formula calculates the total amount of money you will end up with depending on how often you get paid interest.

$$A = P(1 + \frac{r}{n})^{nt}$$

P = Principal - original amount

r = Interest rate as a decimal

n = # times per year interest is calculated

t =# years

You invest \$5000 at 6% annual interest for 10 years.

How much will you have at the end of 10 years if you get interest monthly?

Monthly Interest

$$y = 5000 (1.005)^{120}$$
 $y = 9096.98

100%+0.5%

the exponent will be $120 \rightarrow 12$ times a year for 10 years.

Suppose you invest \$1 at 100% interest for 1 year.

$$A = P(1 + \frac{r}{n})^{nt} \qquad \rightarrow \qquad A = 1(1 + \frac{1}{n})^{n1}$$

$$P = 1$$

$$r = 100\% \rightarrow 1$$

n = # times per year interest is calculated

$$t = 1$$

#times per year compound interest (n)	$1\left(1+\frac{1}{n}\right)^n$	Dollar Value
n = 1	$1\left(1+\frac{1}{1}\right)^{1}$	2.00
n = 2	$1\left(1+\frac{1}{2}\right)^{2}$	2.25
n = 4	$1\left(1+\frac{1}{4}\right)^4$	2.441
n = 12		2.613
n = 52		2.693
n = 365		2.715
<i>n</i> = 8760		2.718
n = 525,600		2.718
n = 31,536,000		2.718
	compound interest (n) n = 1 n = 2 n = 4 n = 12 n = 52 n = 365 n = 8760 n = 525,600	$n = 1 1 1 (1 + \frac{1}{1})^{1}$ $n = 2 1 (1 + \frac{1}{2})^{2}$ $n = 4 1 (1 + \frac{1}{4})^{4}$ $n = 12$ $n = 52$ $n = 365$ $n = 8760$ $n = 525,600$

$$A = 1(1 + \frac{r}{n})^{nt}$$

After a while there is very little change in the dollar value. This equation is said to have a limit of approximately 2.718

Where is e used?

Like π , e is a mathematical constant most often found in formulas.

e is called Euler's constant.

Leonhard Euler: Swiss mathematician

Equation of a Catenary:
$$y = \frac{a}{2} \left(e^{\frac{x}{a}} + e^{\frac{-x}{a}} \right)$$

Catenary: A catenary is the shape that a cable assumes when it's supported at its ends and only acted on by its own weight. It is used extensively in construction, especially for suspension bridges

A famous Catenary:

Logistic Growth:
When the rate of growth of a quantity slows down after initially increasing (or decreasing) exponentially.

Graph

Another famous Catenary.

The equation below models the spread of flu in a school of 1000 students where y represents the number of students infected after x days.

$$y = \frac{1000}{1 + 990e^{-0.7x}}$$

The more often interest is calculated the more money you will earn.

What is more often than every second?

Continuously

Compounding Interest Continuously

