Simplify without using a calculator. Leave your answer as an improper fraction in reduced form.

$$\frac{\frac{5}{4} - 8}{2 - \frac{7}{6}}$$

Simplify:
$$\frac{5}{4} - 8$$

There are many methods to do this, we'll focus on two methods.

$$\frac{\frac{3}{4} - 8}{2 - \frac{7}{6}}$$

this problem is an example of a Complex Fraction

Complex Fractions: (also known as Compound Fractions)

Fractions whose numerators and/or denominators also have fractions.

Fractions within fractions

$$\frac{\frac{5}{4} - 8}{2 - \frac{7}{6}}$$

One method:

Find LCM of all the denominators in the complex fraction.

Then multiply the numerator and denominator of the complex fraction by this LCM.

$$\frac{12(\frac{5}{4}-8)}{12(2-\frac{7}{6})} = \frac{15-96}{24-14}$$

$$= \frac{-81}{10}$$

$$\frac{\frac{5}{4} - 8}{2 - \frac{7}{6}}$$

Another method:

Get ALL the "parts" of the complex fraction to have the LCD.

Then you can cancel all of the denominators.

$$\frac{3}{3} \cdot \frac{\frac{5}{4} - \frac{8}{1}}{\frac{12}{12}} = \frac{\frac{15}{12} - \frac{9}{12}}{\frac{24}{12} - \frac{14}{12}}$$

$$= \frac{\frac{12}{12} \cdot \frac{2}{12} - \frac{7}{6} \cdot \frac{2}{2}}{\frac{24}{12} - \frac{14}{12}}$$

$$= \frac{\frac{15}{12} - \frac{96}{12}}{\frac{24}{12} - \frac{14}{12}}$$

$$= \frac{-\frac{81}{10}}{\frac{10}{10}}$$

Simplify:
$$\frac{\frac{2}{x} + \frac{5}{y^3}}{\frac{3}{x^2} - \frac{6}{y^2}}$$

Eliminate Denominators

$$\frac{x^{2}y^{3}}{x^{2}y^{3}} \cdot \frac{\left(\frac{2}{x} + \frac{5}{y^{3}}\right)}{\left(\frac{3}{x^{2}} - \frac{6}{y^{2}}\right)}$$

$$\frac{2xy^{3} + 5x^{2}}{3y^{3} - 6x^{2}y}$$

Get all denominators to be the same and cancel them.

$$\frac{xy^{3}}{xy^{3}} \cdot \frac{2}{x} + \frac{3}{y^{3}} \cdot \frac{x^{2}}{x^{2}} \times \frac{x^{2}y^{3}}{x^{2}}$$

$$\frac{y^{3}}{y^{3}} \cdot \frac{3}{x^{2}} - \frac{6}{y^{2}} \cdot \frac{x^{2}y}{x^{2}y^{3}}$$

$$\frac{2xy^{3}}{x^{2}y^{3}} + \frac{5x^{2}}{x^{2}y^{3}}$$

$$= \frac{2xy^{3} + 5x^{2}}{3y^{3} - 6x^{2}y}$$

$$= \frac{2xy^{3} + 5x^{2}}{3y^{3} - 6x^{2}y}$$

Simplify:
$$\frac{\frac{11}{9} - \frac{7}{12}}{\frac{13}{24} - 5}$$

To eliminate tors all denominators all denominate LCM use the LCM of
$$9,12,324$$
 of $9,12,324$ 72 $(\frac{11}{9} - \frac{7}{12}) = \frac{88 - 42}{39 - 360}$

$$= \frac{46}{-321}$$

Simplify:

$$\frac{\frac{10}{x} + \frac{4}{xy}}{\frac{2}{x^2y} - \frac{3}{xy^2}}$$

Eliminate denominators method:

$$\frac{x^{2}y^{2}}{x^{2}y^{2}} \cdot \frac{10}{x} + \frac{4}{xy}$$

$$\frac{2}{x^{2}y} - \frac{3}{xy^{2}}$$

$$\frac{10xy^{2} + 4xy}{2y - 3x}$$

$$\frac{\frac{10}{3x} + \frac{4}{xy}}{\frac{2}{x^2y} - \frac{3}{8xy^2}}$$

Eliminate denominators method:

$$\frac{24 \times^{2} y^{2}}{24 \times^{2} y^{2}} \cdot \left(\frac{10}{3x} + \frac{4}{xy} \right)$$

$$\frac{2}{24 \times^{2} y^{2}} \cdot \left(\frac{2}{x^{2}y} - \frac{3}{8 \times y^{2}} \right)$$

$$\frac{80 \times y^{2} + 96 \times y}{48y - 9x}$$

Simplify:
$$\frac{6 + \frac{2}{x - 5}}{\frac{1}{x - 8}}$$

Eliminate denominators method:

$$\frac{(x-5)}{(x-5)} \cdot \frac{(6+\frac{2}{x-5})}{(\frac{1}{x-5}-8)}$$

$$\frac{6(x-5)+2}{1-8(x-5)} = \frac{6x-30+2}{1-8x+40} = \frac{6x-28}{-8x+41}$$