Complex Fractions: (also known as Compound Fractions)
Fractions whose numerators and/or
denominators also have fractions.

$\frac{3 + \frac{4}{3}}{\frac{11}{6} - 1}$

One method:

Find LCM of all the denominators in the complex fraction.

Then multiply the numerator and denominator of the complex fraction by this LCM.

LCM of 3 and 6 is 6.

$$\frac{\sqrt{3 + \frac{4}{3}}}{\sqrt{6} - 1} = \frac{18 + 8}{11 - 6} = \frac{26}{5}$$

Simplify:

$$\frac{3 + \frac{4}{3}}{\frac{11}{6} - 1}$$

There are many methods to do this, I'll focus on two methods.

$$\frac{3 + \frac{4}{3}}{11 - 1}$$

Get ALL the "parts" of the complex fraction to have the LCD.

Then you can cancel all of the denominators.

$$LCD of 3$$
 and $6 = 6$

$$\frac{6}{6}, \frac{3+\frac{4}{3} \cdot \frac{2}{2}}{\frac{11}{6} - \frac{1}{1} \cdot \frac{6}{6}} = \frac{\frac{18}{16} + \frac{8}{16}}{\frac{11}{6} - \frac{6}{16}}$$

$$= \frac{18+8}{11}$$

Simplify:
$$\frac{\frac{2}{3} - \frac{7}{8}}{\frac{3}{4} + \frac{5}{6}}$$

LCM of $\frac{2}{3}$, 8, 4, \$6

is $\frac{24}{4}$ $\frac{24}{6}$ $\frac{24}{4}$ $\frac{3}{6}$ $\frac{16-21}{18+20}$ $\frac{24}{3}$ $\frac{3}{4}$ $\frac{5}{6}$ $\frac{18+20}{38}$