Bellwork

Alg 2 Wednesday, February 13, 2019

- 1. If the perimeter of a square is 28, what is the length of the diagonal of the square? A. $2\sqrt{14}$
 - B. $7\sqrt{2}$
- C. $7\sqrt{3}$
- D. 14
- E. $28\sqrt{2}$

2. If a is 63% of x and c is $\frac{3}{8}$ of x, which of the following is the closest equivalent of the ratio of a to c?

- A. 0.006
- B. 0.236
- C. 0.381
- D. 0.595
- E. 1.680

3. Simplify. State restrictions on the variable.

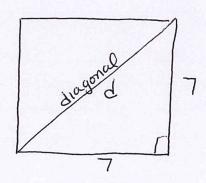
$$\frac{4x^3 + 22x^2 + 30x}{16x^5 + 40x^4 - 144x^3 - 360x^2}$$

Bellwork

Alg 2 Wednesday, February 13, 2019

ANSWERS

1. If the perimeter of a square is 28, what is the length of the diagonal of the square?


A. $2\sqrt{14}$

(B. $7\sqrt{2}$) C. $7\sqrt{3}$

- D. 14
- E. $28\sqrt{2}$

$$\frac{d^{2}}{d^{2}} = 7^{2} + 7^{2} = 49 + 49$$

$$\sqrt{d^{2}} = \sqrt{98}$$

2. If \underline{a} is 63% of \underline{x} and \underline{c} is $\frac{3}{8}$ of \underline{x} , which of the following is the closest equivalent of the ratio of \underline{a} to \underline{c} ?

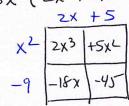
- A. 0.006
- B. 0.236 C. 0.381
- D. 0.595
- E. 1.680

$$a = .63 \times C = \frac{3}{8} \times C$$

$$\frac{\alpha}{C} = \frac{.63 \times}{\frac{3}{8} \times} = \frac{.63}{3/8} = (.63)(\frac{3}{3})$$

$$= (1.68)$$

3. Simplify. State restrictions on the variable.


$$4x^3 + 22x^2 + 30x$$

 $2x(2x^2 + 11x + 15)$

$$\frac{4x^3 + 22x^2 + 30x}{16x^5 + 40x^4 - 144x^3 - 360x^2}$$

$$\frac{2\times(x+3)(2X+5)}{8\times^{2}(x+3)(x-3)(2X+5)} = \frac{1}{4\times(x-3)}$$

$$= \frac{1}{4x(x-3)}$$

