Graphs of Exponential Functions

Using the graphing calculator do the following:

Graph Y₁=1 · 2^x

Use the following window: $X_{min} = -5$ $X_{max} = 5$ $Y_{min} = -5$ $Y_{max} = 10$

Describe this graph

The graph increases from left to right.

The rate of increase speeds up as you move to the right.

What is the y-intercept? (0,1)

General Form of an Exponential Equation:

Leaving $Y_1{=}1\cdot 2^x$ graph $y{=}1\cdot b^x$ for two other values of b bigger than 2 in Y_2 and Y_3 .

1. Make a sketch of all three graphs labelling each graph with it's equation.

See graphs on next page

2. Describe what changing the value of b does to the graph.

this is answered in 2 pages

When b >1 the graph represents Exponential Growth.

in this case b is called the Growth Factor

What point do all 3 graphs have in common?

$$y$$
-int = 1

$$y = ab^x$$

What happens to each graph as you move farther to the left?

The graph flattens out and approaches the x-axis, but never actually reaches or crosses it.

The x-axis is called a Horizontal Asymptote.

A linear asymptote is a line your graph gets very close to the farther away from the origin you are, but never quite reaches.

$$y = ab^x$$

As b gets larger the graph increases/grows faster ("steeper")

Why will these graphs never reach or cross the x-axis as you move farther and farther to the left?

When x becomes bigger negative the reciprocal of the base becomes a smaller number but will never become zero or negative.

Leaving $Y_1=1\cdot 2^x$ change a from 1 to two other positive values. Graph these equations in Y_2 and Y_3 .

1. Make a sketch of all three graphs labelling each graph with it's equation.

see next page for the graphs

2. Describe what changing the value of a does to the graph.

see next page for the answer to this question

$$y = ab^x$$

What does a negative value of a do to the graph?

x-axis reflection Upside Down

all these graphs are upside down compared to the parent function.

What does changing the value of a in the equation do to the graph?

changing the value of a in the equation changes the y-intercept

a = the y-intercept