Each situation is exponential: $y = a(b)^x$

What would the exponent, x, represent in each situation?

- 1. Each year there is 20% more. x is # of years
- 2. Each day there is 5% less. x is # of days
- 3. Each 6 months there is 31.6% more. x is # of 6 month periods.
- 4. Every 20 minutes the number of cells doubles x= # of 20 minute periods

Does each exponential equation represent growth or decay?

1.
$$y = 4500(0.9983)^3$$

$$y = 0.045(1.00201)^3$$

$$v = 7\left(\frac{12}{12}\right)^x$$

5.
$$y = 145(1.33)^{-1}$$

$$= \frac{(1.33)^{-X}}{(1.33)^{X}}$$

Get a White Board, Marker, and Rag

Use the given information to find the base (b) of an exponential equation that could model the situation.

$$y = a \cdot b^x$$

1. Each year there is 20% more.

2. Each day there is 5% less. $\sqrt{b} = 0.95$ 100% - 5% - 95% -

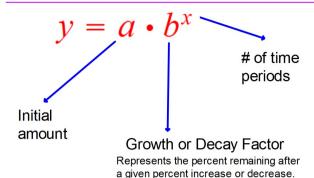
3. Each month there is 31.6% more.
$$b = 1.316$$

- 4. Each week there is 17.3% less. b = 0.827 100%-17.3% = 82.7%
- 5. The half life of a medicine is 2 hours. (b = 0.5)This is like saying there is a 50% decrease. ? 100%-50% = 50%-
- 6. Every day the number of mosquitos doubles b = 2
 This is like saying there is a 100% increase.

For each function find the percent change that the function models and state if it represents an increase or decrease.

800(0.816)^x

2. 1.667(1.204)^x


$$20.4 - 100$$
= 20.4%
Increase

1. The value of a house has been increasing 1.2% each year since 2011. The value of the house in 2011 was \$138,000. Find the value of the house in the following years. Round to the nearest penny.

a) 2012
$$X = 1$$
 $y = 139,656$

100% +1.2% =101.2%

If an exponential equation models a real situation:

2. The population of a city has been decreasing 3.9% each year. The population of the city in 2006 was 458,000. Find the polulation of the city in the following years. Round to the nearest whole number. 100 - 3.9 = 96.0%

a) 2010
$$X = 4$$
 $Y = 390,629$

c) 2000

$$X = -6$$
 [6 years in the past]
 $Y = 581,467$

$$b = .961$$

 $y = 458,000 (.961)^{\times}$
X is #yrs since 2006