## Bellwork Alg 2 Tuesday, January 15, 2019

- 1. A company wants to maximize their Revenue. The following equation models their Revenue as a function of the price they charge:  $R(p) = -1.5p^2 + 165p + 74,350$
- a) Find the price they should charge to maximize their revenue.
- b) Find the maximum revenue rounded to the nearest hundredth.
- 2. Write the equation of this polynomial:



3. State the end behavior for each polynomial.

a) 
$$y = -12x^5 + 3x^6 - 9x^2 + 8x - 15$$

b) 
$$y = -x^3(2x-7)^2(8-x)(5x+1)^3$$

4. Given 2 and -3 are zeros, find the remaining zeros using division.

$$y = x^4 + x^3 + 3x^2 + 9x - 54$$

5. Rationalize each denominator. Simplify your answer.

a. 
$$\frac{36a^4}{\sqrt[5]{9a^{11}b^{28}}}$$

b. 
$$\frac{14}{9 - \sqrt{7}}$$

6. Simplify each. Make sure denominators are rationalized.

a. 
$$\frac{\sqrt{30w^3x^{19}}}{\sqrt{45w^7x^{12}}}$$

b. 
$$\sqrt[3]{12a^7b^4} \cdot \sqrt[3]{14a^6b^{22}}$$

7. Write the equation of each.





## Bellwork Alg 2 Tuesday, January 15, 2019



1. A company wants to maximize their Revenue. The following equation models their Revenue as a function of the price they charge:  $R(p) = -1.5p^2 + 165p + 74,350$ 

$$X$$
-coord of the vertex  
 $P = \frac{-b}{2a} = \frac{-165}{2(-1.5)} > 455$ 



b) Find the maximum revenue rounded to the nearest hundredth.

2. Write the equation of this polynomial:





NEG ODD end behavior

3. State the end behavior for each polynomial.

a) 
$$y = -12x^5 + 3x^6 - 9x^2 + 8x - 15$$

b) 
$$y = -x^3(2x-7)^2(8-x)(5x+1)^3$$

Degree = 
$$3+2+1+3=9$$
  
L.C. =  $(-)(+)(-)(+) = Pos$ 





4. Given 2 and -3 are zeros, find the remaining zeros using division.  $y = x^4 + x^3 + 3x^2 + 9x - 54$ 

$$\int_{0}^{4} \chi^{2} + 9 = 0 \qquad \chi = \pm 3i$$

$$\sqrt{\chi^{2}} = \sqrt{-9}$$

5. Rationalize each denominator. Simplify your answer.

5. Rationalize each denomina
a. 
$$\frac{36a^4}{\sqrt[5]{9a^{11}b^{28}}}$$
  $\sqrt[5]{3^3a^4b^2}$ 

$$= \frac{36a^{4}\sqrt{3^{3}a^{4}b^{2}}}{\sqrt[5]{3^{5}a^{5}b^{30}}}$$

$$= \frac{12a\sqrt[5]{3^3q^4b^2}}{b^6}$$

b. 
$$\frac{14}{9-\sqrt{7}} \cdot \frac{9+\sqrt{7}}{9+\sqrt{7}}$$

$$(9)^{2}-(\sqrt{7})^{2} = 81-7 = 74$$

$$= \frac{(4)(9+17)}{74} = \frac{7(9+17)}{37} = \frac{63+717}{37}$$

6. Simplify each. Make sure denominators are rationalized.

a. 
$$\frac{\sqrt{30w^3x^{19}}}{\sqrt{45w^7x^{12}}}$$

$$= \frac{x^3 \sqrt{6x}}{3w^2}$$

b. 
$$\sqrt[3]{12a^7b^4} \cdot \sqrt[3]{14a^6b^{22}}$$
 $\sqrt[4]{3}$ 
 $\sqrt[2]{2^2 \cdot 3}$ 
 $\sqrt[3]{2^2 \cdot 3}$ 
 $\sqrt[3]{3}$ 

$$= \sqrt[3]{2^3 \cdot 21 a^{13} b^{26}}$$

7. Write the equation of each.





