
Bellwork Alg2 Monday, January 14, 2019

- 1. Solve for the variable indicated. State restrictions on the the variables.
- a. Q(M-Y)+K=RM
- Solve for M
- b. $\frac{CH-A}{W}+E=G$ Solve for H
- 2. Use these functions: f(x) = x 3 g(x) = 2x + 3 $h(x) = \frac{2x + 1}{x 3}$ $k(x) = x^2 2x$

- a. Find g(h(10))
- b. Find k(f(x)). Simplify as much as possible.
- c. Find h(g(x)). Simplify as much as possible.
- 3. Find ALL EXACT complex solutions. Don't use the same method on all problems.
- a. $2x^4 + 26x^3 + 60x^2 = 0$
- b. $x^2 + 6x 3 = 0$ c. $2x^2 + 203 = 11$

- d. $3x^3 7x^2 + 18x 42 = 0$
- 4. An object is shot into the air from the top of a 45 foot building. The following equation models the objects height h(t) as a function of the amount of time t (sec) after the launch. $h(t) = -16t^2 + 184t + 45$ a) Find the objects maximum height and the time it takes to reach that height.
- b) Find the amount of time it takes the object to reach a height of 75 feet.
- 5. Write the equation of this parabola.

- 6. Find each product:
- a) $(4+3\sqrt{6})(2-5\sqrt{6})$
- b) (3-2i)(5+6i)

- 7. Find each quotient.
- a) $\frac{5x^4 + 7x^2 9x + 11}{x + 3}$
- b) $\frac{6x^3 + 13x^2 x + 9}{2x + 5}$
- 8. Graph to find all real zeros and the coordinates of ALL extrema, if any. For each extrema, identify what kind it is. Round to the nearest hundredth.

$$f(x) = x^4 - 3x^3 - 3x^2 + 11x + 1$$

Bellwork Monday, January 14, 2019 Alg2

Answers

Solve for H

1. Solve for the variable indicated. State restrictions on the the variables.

Solve for M

a.
$$Q(M-Y)+K=RM$$

 $QM-QY+K=PM$

2. Use these functions: f(x) = x - 3

$$g(x) = 2x + 3$$

$$h(x) = \frac{2x+1}{x^2}$$

b. $\frac{CH-A}{W}+E=G$

$$g(x) = 2x + 3$$
 $h(x) = \frac{2x + 1}{x - 3}$ $k(x) = x^2 - 2x$

W,C +0

b. Find k(f(x)). Simplify as much as possible.

a. Find
$$g(h(10))$$

$$h(10) = \frac{2(10)+1}{(10)-3} = \frac{21}{7} = 3$$

$$g(h(10) = g(3) = 2(3) + 3$$
= 9

$$(x-3)^2 - 2(x-3)$$

 $H = \frac{W(G-E)+A}{C}$

$$= \sqrt{x^2 - 8x + 15}$$

c. Find h(g(x)). Simplify as much as possible.

$$\frac{2(2x+3)+1}{(2x+3)-3} = \frac{4x+6+1}{2x+3-3} = \frac{4x+7}{2x}$$
 No, this can't be reduced

$$\frac{4x+6+1}{2x+3-3}$$

3. Find ALL EXACT complex solutions. Don't use the same method on all problems.

a.
$$2x^4 + 26x^3 + 60x^2 = 0$$

$$2x^{2}(x^{2}+13x+30)=0$$

$$\begin{array}{c|c} 30 & 2x^{2}(x+3)(x+10) = 0 \\ \hline 3 & 10 & x = 0, -3, -10 \end{array}$$

b.
$$x^2 + 6x - 3 = 0$$

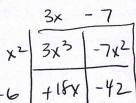
$$x^2 + 6x + 9 = 3 + 9$$

$$\sqrt{(x+3)^2} = 12$$

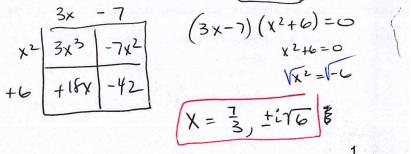
 $X+3 = \pm 2\sqrt{3}$
 $X = -3 \pm 2\sqrt{3}$

$$X = -3 \pm 2\sqrt{3}$$

c.
$$2x^2 + 203 = 11$$

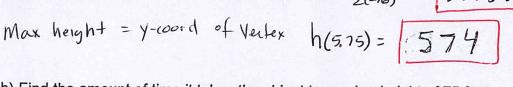

$$\frac{2x^{2}}{2} = -\frac{192}{2}$$

$$\sqrt{x^{2}} = \sqrt{-96}$$


$$\sqrt{-6.6}$$

$$X = \pm 4116$$

d.
$$3x^3 - 7x^2 + 18x - 42 = 0$$
 Factor

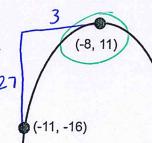

$$3x^3 - 7x^2 + 18x - 42 = 0$$

4. An object is shot into the air from the top of a 45 foot building. The following equation models the objects height h(t) as a function of the amount of time t (sec) after the launch. $h(t) = -16t^2 + 184t + 45$

a) Find the objects maximum height and the time it takes to reach that height.

Time to reach max
$$ht = LOS = \frac{-184}{2(-16)} = \frac{5.75 \text{ sec}}{1.000}$$

b) Find the amount of time it takes the object to reach a height of 75 feet.


Set h=75 & solve for t using Quadrate formula
$$75 = -16t^{2} + 184t + 45$$

$$-75 = -16t^{2} + 184t + 45$$

(th)

$$a = -\frac{27}{9} = -3$$

$$y = a(x + 8)^2 + 11$$

$$y = -3(x+8)^2 + 11$$

a)
$$(4+3\sqrt{6})(2-5\sqrt{6})$$

b)
$$(3-2i)(5+6i)$$

$$\frac{3 - 2i}{5 | 15 | -10i} = 27 + 8i$$

$$+6i | 18i | -12i^{2} = 12$$

a)
$$\frac{5x^4 + 7x^2 - 9x + 11}{x + 3}$$

$$-3$$
 5 0 7 -9 11
 -15 45 -156 495
 -15 52 -165 506

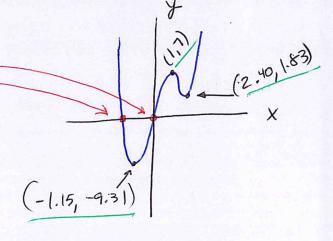
$$5x^3 - 15x^2 + 52x - 165$$

 $R = 500$

b)
$$\frac{6x^{3} + 13x^{2} - x + 9}{2x + 5}$$

$$2x + 5 \left[6x^{3} + 13x^{2} - x + 2\right]$$

$$3x^2 - x + 2$$


$$Q = -1$$

8. Graph to find all real zeros and the coordinates of ALL extrema, if any. For each extrema, identify what kind it is. Round to the nearest hundredth.

$$f(x) = x^4 - 3x^3 - 3x^2 + 11x + 1$$

ABS Max: None

ABS min: (-1.15, -9.31)
Rel max: (1,7)
Rel min: (2.40, 1.83)

