Chapter 5

1. Write the equation of this parabola in Vertex Form: $y = a(x - h)^2 + k$

For problems 2 and 3: For each quadratic answer the following:

- a) State the equation for the line of symmetry
- b) State the coordinates of the vertex
- c) State the y-intercept
- d) Tell if the parabola has a maximum or a minimum.

$$2. \ \ y = -2x^2 - 16x + 13$$

3.
$$y = 3(x-1)^2 + 6$$

4. Find all EXACT Complex solutions using FACTORING:

a)
$$6x^2 - 15x = 0$$

b)
$$2x^2 + 6x - 20 = 0$$

c)
$$2x^2 + x - 10 = 0$$

d)
$$2x^3 + 7x^2 - 18x - 63 = 0$$

5. Find all EXACT Complex solutions using SQUARE ROOTS:

a)
$$5 + 3x^2 + 57 = 8$$

b)
$$(x+3)^2 + 11 = 47$$
.

6. Find all Complex solutions using the QUADRATIC FORMULA. Give all real solutions rounded to the nearest hundredth and simplify all imaginary solutions.

a)
$$4x^2 + 20x - 1 = 0$$

b)
$$x^2 - 4x + 29 = 0$$

7. Find all EXACT Complex solutions by COMPLETING THE SQUARE.

a)
$$x^2 + 8x - 32 = 0$$

b)
$$2x^2 - 12x = 20$$

On the final exam you will be given a group of quadratic equations to solve using any method you wish but you'll be required to use each method a given number of times.

- 8. An object is shot into the air from the top of a 30 foot building. The following equation models the height of the object as a function of time. $h(t) = -16t^2 + 200t + 30$
- a) Find the time to reach it's maximum height.
- b) Find the maximum height.
- c) Find the time it takes for the object to return to the ground.
- d) Find the time it takes for the object to reach a height of 100 feet.
- 9. A company wants to minimize their costs. The following equation models the company's costs, C(p), as a function of the number of parts produced each day: $C(p) = 0.75p^2 120p + 8500$
- a) Find the number of parts they should produce each day in order to minimize their costs.
- b) Find the minimum costs.
- 10. Find each product:
- a) (2+4i)(5-3i)
- b) (6+7i)(6-7i)