Property

Dividing Radical Expressions

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers and $b \neq 0$, then $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$.

They must have the same index

$$\left(\frac{\sqrt[n]{a}}{\sqrt[n]{b}}\right) = \left(\sqrt[n]{\frac{a}{b}}\right).$$

You can do the roots first then simplify the fraction

OR

You can reduce the fraction first then do the root.

Simplify. Assume that all variables are positive.

$$\sqrt{\frac{36d}{16d^8}} = \frac{\sqrt{36d}}{\sqrt{16d^8}}$$

Since I see perfect squares under the radicals I'll do the square roots first then reduce the fraction.

Simplify. Assume that all variables are positive.

$$\frac{\sqrt{24x^5y^{13}}}{\sqrt{3xy^4}} = \sqrt{\frac{24x^5y'^3}{3xy'^4}}$$

Since I don't see perfect squares under the radicals I'll reduce the fraction first then do the square root.

Simplify. Assume that all variables are positive.

$$\frac{\sqrt{48x^9y^8}}{\sqrt{2x^6y^3}} = \sqrt{\frac{48x^9y^8}{2x^6y^3}}$$
Since I don't see perfect squares under the radicals I'll reduce the fraction first then do the square root.
$$= \sqrt{\frac{48x^9y^8}{2x^6y^3}}$$

$$= \sqrt{\frac{48x^9y^8}{2x^6y^3}}$$

$$= \sqrt{\frac{48x^9y^8}{2x^6y^3}}$$

$$= \sqrt{\frac{48x^9y^8}{2x^6y^3}}$$

$$= \sqrt{\frac{48x^9y^8}{2x^6y^3}}$$

$$= \sqrt{\frac{48x^9y^8}{2x^6y^3}}$$

Simplify. Assume that all variables are positive.

$$\sqrt[3]{\frac{64m^4n^{12}}{125a^9b^{24}}} = \sqrt[3]{(4m^4n^{12})^2}$$
Since I see perfect
cubes under the

cubes under the radicals I'll do the cube roots first then reduce the fraction.

You can now finish Hwk #34

Sec 7-2

Due Monday

Page 377

Problems 14-16, 19, 21, 25, 26, 44, 45

Simplify. Assume that all variables are positive.

$$\frac{\sqrt[3]{5a^7b^2}}{\sqrt[3]{40a^2b^{11}}} = \sqrt[3]{\frac{a^5}{8b^9}}$$

Since I don't see perfect cubes under the radicals I'll reduce the fraction first then do the cube root.

$$= \frac{a^{3\sqrt{a^2}}}{2b^3}$$