Bellwork Alg 2 Wednesday, October 17, 2018

Find all Complex solutions (real and imaginary) for each quadratic equation. You must use each of the following methods at least once: Factoring, Square Roots, Quadratic Formula, and Completing the Square. Round real answers to the nearest hundredth and give imaginary answers in EXACT simplified form.

1.
$$2x^2 - 6x = 56$$

2.
$$x^2 + 13 = 4x$$

3.
$$2(x-8)^2 + 13 = 63$$

4.
$$4x^2 - 4x + 19 = 0$$

5.
$$x^2 + 10x - 24 = 0$$

6.
$$3x^2 + 47 = 11$$

7. Write the equation of this quadratic in Vertex Form.

- 8. Factor Completely. $28x^5 119x^3 350x$
- 9. A ball is shot into the air from the top of a 75 foot tall building. The following equation models the objects height h (ft) as a function of time t (sec) after launch. $h(t) = -16t^2 + 240t + 75$ Round to the nearest hundredth.
- a) Find the amount of time it takes for the object to hit the ground.
- b) Find the amount of time it takes for the object to reach a height of 200 feet.
- c) Find the amount of time it takes to reach its maximum height.

Alg 2 Wednesday, October 17, 2018 Answers Bellwork

Find all Complex solutions (real and imaginary) for each quadratic equation. You must use each of the following methods at least once: Factoring, Square Roots, Quadratic Formula, and Completing the Square. Round real answers to the nearest hundredth and give imaginary answers in EXACT simplified form.

1.
$$2x^2 - 6x = 56$$
 FACTUR

$$\frac{2x^2-6x-56}{2} = \frac{2}{2}$$

3.
$$2(x-8)^2 + 13 = 63$$
 Squares

$$\frac{2(x-8)^{2} = 50}{2}$$

$$(x-8)^{2} = 25$$

$$x-8 = \pm 5$$

$$X = 3, 13$$

5.
$$x^2 + 10x - 24 = 0$$
 FACTUR

2.
$$x^2 + 13 = 4x$$
 complete the square

$$x^{2}-4x + 4 = -73 + 4$$
 47
 $(x-2)^{2}$
 $(x-2)^{2} = -9$
 $x-2 = \pm 3i$
 $\pm 2 + 2$
 $x = 2 \pm 3i$

4.
$$4x^2 - 4x + 19 = 0$$
 quadratic FormuLA

$$X = \frac{4 \pm \sqrt{-288} - 144.2}{8}$$

$$X = \frac{4 \pm \sqrt{-288} - 144.2}{8} = \frac{1 \pm 3i\sqrt{2}}{2}$$

6.
$$3x^2 + 47 = 11$$
 SQ REDTS

$$\frac{3x^{2} = -36}{3}$$

$$\sqrt{x^{2}} = \sqrt{-12} \Rightarrow 4.3 \qquad x = \pm 2i\sqrt{3}$$

7. Write the equation of this quadratic in Vertex Form.

THIS FUNCTION

$$a = \frac{-9}{36} = -\frac{1}{4}$$

Parent Function 8. Factor Completely. $28x^5 - 119x^3 - 350x$

$$7x (4x^{4} - 17x^{2} - 50) = 7x (x^{2} + 2)(4x^{2} - 25)$$

$$-200/$$

$$-25 + 8$$

$$+2 + 8x^{2} - 50$$

$$-7x (x^{2} + 2)(2x^{2} - 25)$$

$$-7x (x^{2} + 2)(2x^{2} + 25)$$

- 9. A ball is shot into the air from the top of a 75 foot tall building. The following equation models the objects height h (ft) as a function of time t (sec) after launch. $h(t) = -16t^2 + 240t + 75$ Round to the nearest hundredth.
- a) Find the amount of time it takes for the object to hit the ground.

$$\mathcal{O} = -16t^{2} + 240t + 75 \quad \text{use quadratic Formula}$$

$$b^{2} - 4ac = 62,400$$

$$t = \frac{-240 \pm \sqrt{62,400}}{-32}$$

$$t = 15.31 \text{ sec}$$

b) Find the amount of time it takes for the object to reach a height of 200 feet. h = 200

$$200 = -16t^{2} + 240t + 75$$

$$-200$$

$$0 = -16t^{2} + 240t - 125$$

$$0 = -16t^{2} + 240t - 125$$

$$0^{2} - 49c = 49,600$$

$$1 = -240 + 149,600$$

$$0.54 = 0.54 = 14.46 \text{ sec}$$

c) Find the amount of time it takes to reach its maximum height.

