- 1. Find the Equation of the LOS, coordinates of the Vertex, and the y-intercept for each.
- a) $y = -4x^2 + 24x 6$

b) $y = -8(x+3)^2 - 9$

2. Write the equation of this quadratic in Vertex Form.

3. Factor completely. $6x^5 - 93x^3 - 48x$

Delivor Aig & Ivioliday, October 1, 2010 Answers

1. Find the Equation of the LOS, coordinates of the Vertex, and the y-intercept for each.

a)
$$y = -4x^2 + 24x - 6$$

b)
$$y = -8(x+3)^2 - 9$$

STANDARD

LOS:
$$X = \frac{34}{2(-4)} = \frac{-24}{-8} = 3$$

Vertex
$$(-3,-9)$$
 LOS: $X = -3$
 $y - 107 = -8(0+3)^2 - 9$
 $= -8(9) - 9$
 $= -72 - 9$
 $y - 107 = -81$

2. Write the equation of this quadratic in Vertex Form.

$$y = a(x+3)^2 - 10 \Rightarrow y = -\frac{2}{3}(x+3)^2 - 10$$

$$y = -\frac{2}{3}(x+3)^2 - 10$$

EQ:

THIS FUNCTION

$$\alpha = \frac{-24}{36} = \frac{-2}{3}$$

3. Factor completely. $6x^5 - 93x^3 - 48x$

$$3x (2x^{4} - 31x^{2} - 16)$$

$$= 3x (2x^{2} + 1)(x^{2} - 16)$$

$$= 3x(2x^{2} + 1)(x \pm 4)$$

$$-32$$
 -32
 $+1$
 -31
 x^2 -16