Absolute Value:

Distance from zero.

What could the absolute value of a Complex Number mean?

$$|5 + 2i| = ?$$
 means the distance 5+2i is from the origin.

What could the absolute value of an ordered pair mean?

$$|(4, -1)| = ?$$
 means the distance (4,-1) is from the origin.

Leg² + Leg² = Hypor²

$$4^2 + 1^2 = X^2$$

 $16 + 1 = X^2$
 $X^2 = 17$
 $X = \sqrt{17}$

$$\left| a + bi \right| = \sqrt{a^2 + b^2}$$

Find the absolute value of this complex number.

$$|3-7i| = \sqrt{3^2+7^2}$$
 $|3-7i| = \sqrt{3^2+7^2}$
 $|3-7i| = \sqrt{3^2+7^2}$
 $|3-7i| = \sqrt{3^2+7^2}$
 $|3-7i| = \sqrt{58}$

5th/6th

You can now do Hwk #15. Sec 5-6

Page 278

Problems 6-8, 17, 18, 20, 21, 59, 60

Due tomorrow

Find the absolute value of this complex number.

$$|6i| = |0+6i|$$

$$= \sqrt{6^2+6^2}$$

$$= \sqrt{36} = |6|$$

$$i = \sqrt{-1}$$

$$i^2 = (\sqrt{-1})^2 = -1$$

When simplifying, every i² can be replaced with -1 then look to continue simplifying.

Simplify each.

1.
$$7i(2-8i)$$

When dealing with Real Numbers only:

$$(x + 5)(3x + 2)$$
 is a Trinomial

When dealing with Imaginary Numbers only:

$$(5 + i)(2 + 3i)$$
 is a Binomial

The product of two imaginary numbers is Another Imaginary Number.

Simplify:

$$(7 + 9i)(3 - 2i)$$
 $7 + 9i$
 $3 = 2i + 27i$
 $-2i - 14i = -18(-i)$
 $= +16$

Simplify:

$$(1+5i)^{2} = (1+5i)(1+5i)$$

$$\frac{1}{1+5i} + 5i$$

$$+5i + 5i + 25i$$

$$= -25$$

 $(x + 5)^2$ is never just 2 terms!!!

$$(a + b)^2 = a^2 + 2ab + b^2$$

$$(x + 5)^2 = (x)^2 + 2(1)(5)x + (5)^2$$

$$= x^2 + 10x + 25$$

Simplify.

$$(3 - 4i)^2$$

$$\frac{3}{9} - 4i$$
 $\frac{3}{9} - 12i$
 $-4i - 12i + 16i^2$
 $= 9 - 24i + 16i^2$
 $= 9 - 24i - 16$
 $= 9 - 24i - 16$
 $= -7 - 24i$

However.....

$$(1+5i)^2 = (1)^2 + 2(1)(5i) + (5i)^2$$

$$= | +(0i) + 25i^2 = | +(0i) - 25$$
When you square a complex number you get another complex number

another complex number.

Simplify.

$$(4+2i)(4-2i)$$

Simplify each.

1.
$$(2x - 3)(2x + 3)$$

$$2.(2-3i)(2+3i)$$

Factors such as (a + b) and (a - b) are called CONJUGATES

Conjugate

The conjugate is where we change the sign in the middle of two terms like this:

$$3x + 1$$
Conjugate: $3x - 1$

When a and b are REAL #'s

$$(a + b)(a - b) = a^2 - b^2$$

With Imaginary Numbers:

$$(a + bi)(a - bi) = a^2 + b^2$$
 $\Rightarrow a^2 - b^2 i^2$
= $a^2 - b^2 (-i) = a^2 + b^2$

$$(4+2i)(4-2i) = (4)^{2} + (2)^{2}$$

= $(6+4)^{2} = (6)^{2}$

Complex Conjugates: a + bi and a - bi

$$(7 + 4i)(7 - 4i) = 7^2 + 4^2 - 49 + 16 - (65)$$
 $6 = 7$
 $6 = 7$

The product of complex conjugates is always a constant

Simplify each.

$$= (6)^{2} + (3)^{2}$$

$$= 36 + 9$$

1.
$$7i(5 + 2i)$$

$$= 35i + 14(-1)$$

$$= -14 + 35i$$

$$i = \sqrt{-1} = i$$

$$i^{2} = (\sqrt{-i})^{2} = -1$$

$$i^{3} = i^{2} \cdot i = (-i)(i) = -i$$

$$i^{4} = i^{2} \cdot i^{2} = (-i)(-i) = 1$$

$$i^{5} = \underbrace{i \cdot i \cdot i \cdot i \cdot i}_{-i} = (-i)(-i)(i) = i$$

$$i^{6} = \underbrace{i \cdot i \cdot i \cdot i \cdot i}_{-i} = (-i)(-i)(-i) = -1$$

Powers of i repeat every 4:

$$i = i$$
 $i^5 = i$ $i^9 = i$ $i^{13} = i$
 $i^2 = -1$ $i^6 = -1$ $i^{10} = -1$ $i^{14} = -1$
 $i^3 = -i$ $i^7 = -i$ $i^{11} = -i$ $i^{15} = -i$ etc.
 $i^4 = 1$ $i^8 = 1$ $i^{12} = 1$ $i^{16} = 1$

2.
$$(3i)(5i)(2i) =$$

$$= 30i^{3}$$

$$= 30(-i)$$

$$= -30i$$

3.
$$(-2i)(\underline{10}i)(i)(\underline{4}i) =$$

$$-86i^{4}$$
= $(-86)(1) = -80$

You can now finish Hwk #16

Sec 5-6

Page 278

Problems 37, 40, 50-52, 57, 62, 65