What does each ask for?

$$\pm \sqrt{25}$$
 both positive and negative square roots of 25

$$-\sqrt{36}$$
 only the negative square root of 36

$$\sqrt{49}$$
 only the positive square root of 49

Solve.

$$x^2 = 676$$

Simplify.

$$\sqrt{72}$$

$$= \sqrt{36 \cdot 2}$$

$$= \sqrt{36 \cdot 72}$$

$$= \sqrt{672}$$

Simplify. 
$$\sqrt{729}$$
  $\sqrt{729} = 27$ 

When there are two roots of a number the radical symbol  $\sqrt{\phantom{a}}$  without anything in front means

The Prinicpal Square Root (the positive square roots)



### **Imaginary Numbers:**

$$\sqrt{-1} = i$$

1 is called the imaginary unit.

Simplify each.

1. 
$$\sqrt{20}$$

2.  $\sqrt{-16}$ 

=  $\sqrt{4.5}$ 

=  $\sqrt{-1.16}$ 

=  $\sqrt{-1.16}$ 

=  $\sqrt{-1.16}$ 

=  $\sqrt{-1.16}$ 

### Get:

- a small white board
- dry-erase marker
- rag to wipe board

Find ALL EXACT Complex solutions.

1. 
$$3x^{2} + 23 = 11$$
  
 $-23 - 23$   
 $3x^{2} = -/2$   
 $\sqrt{x^{2}} = -/4 = \sqrt{-/.9}$   
 $\sqrt{x^{2}} = -/4 = \sqrt{-/.9}$ 

2. 
$$7(x-5)^{2} + 134 = 8$$

$$-/34 -/34$$

$$\frac{7(x-5)^{2} = -/26}{7}$$

$$(x-5)^{2} = |-/8|$$

$$X-5 = \sqrt{-/-9.2}$$

$$X-5 = \pm 3i\sqrt{2}$$

$$+5 +5$$

$$X = 5 \pm 3i\sqrt{2}$$

Simplify each.

1. 
$$\sqrt{75}$$

$$= \sqrt{-1849}$$
3.  $\sqrt{-24}$ 

$$= \sqrt{-1.1849}$$

## Simplify each.

1. 
$$\sqrt{-98}$$

$$= \sqrt{-1 \cdot 49 \cdot 2}$$

$$= 7 \cdot \sqrt{2}$$

2. 
$$\sqrt{-256}$$
=  $\sqrt{-1.256}$ 
= 16i

3. 
$$\sqrt{-39}$$
  
=  $\sqrt{-/\cdot 39}$   
=  $\sqrt{39}$ 

4. 
$$5\sqrt{-18}$$
  
=  $5 \cdot \sqrt{-1.9.2}$   
=  $5 \cdot 3 \cdot i \sqrt{2}$   
-  $15i\sqrt{2}$ 

# **Complex Numbers**

a + bi a and b are real numbers

| Real Numbers | Imaginary Numbers                             |
|--------------|-----------------------------------------------|
| b must be 0  | b ‡ 0<br>a can be any real<br>number - even 0 |

# any number that can be written in the form: a + bi Real Imaginary Part Part Examples of Imaginary #'s:

10 - 7i or 13i