# Hwk #20

- 3. a. The exponents of monomials and polynomials must be what kind of numbers? Whole Numbers
  - b. The coefficients of a polynomial must be what kind of numbers?

#### Real Numbers

#### Definition

**Polynomial Function** 

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$
 where  $n$  is a nonnegative integer

where n is a nonnegative integer and the coefficients  $a_n, \ldots, a_0$  are real numbers.

1. Monomial:

Give three examples of a monomial:

A real number, a variable, or the product of a real number and variables.

7, X, 5a2

Variables may have exponents. a Term

2. Polynomial:

Give two examples of a polynomial:

A monomial or the sum of monomials

$$4x + 3$$

A monomial is a polynomial with just one term

$$-7x^2 + 4x - 8$$

$$y = (3x + 1)(x - 8)$$
  
 $y = 3x^2 - 23x - 8$ 

This is called expanded form

$$y = 3x^2 - 23x - 8$$

$$y = (3x + 1)(x - 8)$$

Factors are things being multiplied together and that is what this problem show. There are usually parentheses when in factored form.

## 4. What does a polynomial in standard form look like?

Expanded, with terms in descending order according to their exponent (degree).

## 5. The leading coefficient of a polynomial is

The coefficient of the term with the largest exponent after it's been expanded. If it's in Standard Form it will be the first coefficient.

#### 6. The degree of a polynomial is

The largest exponent after it's been expanded.

If it's in Standard Form it will be the first exponent.

## 7. Complete these two tables by filling in the blanks.

| Degree of Polynomial | Name by Degree |
|----------------------|----------------|
| 0                    | Constant       |
| 1                    | Linear         |
| 2                    | Quadratic      |
| 3                    | Cubic          |

# standard form of a polynomial. A one-variable polynomial in standard form has no two terms with the same degree, since all like terms have been combined.

Degree
$$P(x) = (2x^3 - 5x^2 - 2x + 5) - Polynomial$$
Leading Cubic Quadratic Linear Constant coefficient term term term term

| # of terms in polynomial | Name by # of terms |
|--------------------------|--------------------|
| 1                        | Monomial           |
| 2                        | Binomial           |
| 3                        | Trinomial          |

# 8. Is each of the below a polynomial? If not give a reason.

**a)** 
$$y = \frac{3}{7}x^2 + 3x - 14x^4 + 4$$

Yes.

All exponents are whole numbers and all coefficients are real numbers

c) 
$$y = 9\sqrt{x} + 3x^7 - x^{\frac{2}{3}}$$

No.

There is a fractional exponent and  $\sqrt{x}$  means  $\frac{1}{x}^{\frac{1}{2}}$ 

**b)** 
$$y = 4x^{-2} + x^3 - \frac{8}{x}$$

No

There is a negative exponent and  $\frac{8}{\mathcal{X}}$  means  $\,8\chi^{-1}$ 

**d)** 
$$y = 9^x + 10ix^4 - 15$$

No.

There is an imaginary coefficient and an exponent that is a varialbe.

**b)** 
$$15 + 6x^3 - 3(x^2 + 5) + x^3$$

Standard Form:  $7x^3 - 3x^2$ 

Degree: 3

Leading Coefficient: 7

Name by Degree Cubic

Name by # of terms: Binomial



**9.** a) 
$$(x+3)^2-1$$

Standard Form:  $x^2 + 6x + 8$ 

Degree: 2

Leading Coefficient: 1

Name by Degree: Quadratic

Name by # of terms: Trinomial

10. State the degree of each polynomial.

Polynomials in Expanded Form:

**a)** 
$$7x^2 + 12 - 13x^4 + 8x$$

**b)** 
$$9x + 1$$

Degree: 4

Degree: 1

Degree: 0

Without epxanding the whole polynomial you can find the degree and leading coefficient by multiplying the leading term of each factor.

#### Polynomials in Factored Form:

d) 
$$(\underline{x}+3)(\underline{2x}-1)$$
  
 $(x)(2x)$   $\longrightarrow$   $\bigcirc$   $\times$   $\bigcirc$  Degree:  $\bigcirc$ 

$$(x^2)(x) = x^2$$
e)  $(x-7)^2(x-5)$ 

Degree: 3

Polynomials: Exponents must be Whole Numbers

This means exponents can't be:

- Negative
- Fractions (rational #'s)
- Decimals
- Variables

This also means that the variable X can't be

- In a denominator (neg exponent)
- Under a radical (fractional exponent)
- An exponent itself

#### Domain of all Polynomials is: $(-\infty,\infty)$

Definition

**Polynomial Function** 

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$
 where *n* is a nonnegative integer and the coefficients  $a_n, \ldots, a_0$ 

and the coefficients  $a_n, \ldots, a_0$ are real numbers.

Get a small white board, rag, and marker

State the Degree and Leading Coefficient of each.

$$2x^5 - 3x^5 = -x^5$$

Degree: 5

Leading Coefficient: -

**2.** 
$$f(x) = 14x^3 + x^2 - 7x^4 + 3x - 5$$

Degree:

Leading Coefficient: - >

State the degree and leading coefficient of each.

3. 
$$y = (\underline{x} + 5) \widehat{\mathcal{D}}(\underline{x} - 3) \widehat{\mathcal{D}}$$

$$(\chi^{2}) \cdot (\chi^{2}) = \chi^{4}$$

4. 
$$y = (\underline{2x} + 3)(\underline{x} - 2)^{3}(\underline{x} + 6)^{3}$$
 Deg:  $C$ 

Without epxanding the whole polynomial you can find the degree and leading coefficient by multiplying the leading term of each factor.

State the degree and leading coefficient of each.

Deg: LC: 
$$y = (7x + 11)(9x - 15)$$
  $(9x) = 63x^2$ 

2. 
$$y = (2x - 7)(3x + 1)(4x - 9)$$
 Deg: LC:  $\geq 4$ 

State the degree and leading coefficient of each.

5. 
$$y = \frac{-2x}{(2x - 5)^3(3x + 1)^2}$$
 Deg: 6 LC: - )44  
 $(-2x)(2x)^3(3x)^2$   
 $(-2x)(8x^3)(7x^2) = -144x^6$ 

6. 
$$y = (2x + 9)^{2}(2 - 5x)^{3}(4 - 3x)^{2}$$
 Deg:  $7$  LC:  $-4500$ 

$$(2x)^{2}(-5x)^{3}(-3x)^{2}$$

$$(4x^{2})(-125x^{3})(9x^{2}) = -4500 \times^{7}$$

What will be most important for Chapter 6 is whether the Leading Coefficient is either

Positive or Negative

For each polynomial state if the:

Degree is EVEN or ODD and Leading Coefficient is POS or NEG What will be most important for Chapter 6 is whether the Degree of a Polynomial is either

Odd or Even

1. 
$$y = 4x^2(x+3)^2(11-2x)(4x+1)^3$$
  
 $(4x^3)(x)^2(-2x)(4x)^3$ 

DEG: Odd/Even

Add the exponents:

LC: Pos
$$(+)(+)^2(-)(+)^3$$

2+2+1+3 = 8

$$(+)(+)(-)(+) = Neg$$

to determine if the Leading Coefficient is POS or NEG you only have to analyze the product of the sign of the leading coeff of each factor.

2. 
$$y = -5x(7x - 8)(2x + 3)^{2}(9x - 10)$$
  
 $(-5x)(7x)(2x)^{2}(9x)$ 

DEG: Odd/Even

LC: Pos Neg

Add the exponents: 1 +1+2+1= 5

(-)(+)(+)²(+)

(-)(+)(+)(+) = Neg

4. 
$$y = 7x^4(4x - 9)^3(x^2 + 6)^3(9 - 2x)^2(x + 7)(3x - 5)^2$$
  
 $(+x^4)(+x)^3(+x^2)^3(-x)^2(x)(+x)^2$   
 $(+x^4)(+x^3)(+x^4)(+x^4)(x)(+x^2)(x)(+x^2)$ 

DEG: Odd Even

LC: Pos/Neg

(+)(+)(+)(+)(+) = POS

add exponents: 4+3+6+2+1+2 = 18

3. 
$$y = -3x^2(5x-6)^3(2-x)^2(7-4x)(8-3x)^3$$
  
 $(-x^2)(+x)^3(-x)^2(-x)(-x)^3$ 

DEG: Odd/Even

LC: Pos Neg

add exponents: 2+3+2+1+3 = 11  $(-)(+)^{3}(-)^{2}(-)(-)^{3}$ 

(-)(+)(+)(-)(-) = Neg

You can now finish Hwk #21 Sec 6-1

**Practice Sheet**