Use these two functions: f(x) = 2x - 3 $g(c) = 2c^2 - 5c$

①
$$f(6) = 2(6) - 3 = 12 - 3 = 9$$

Use these two functions: f(x) = 2x - 3 $g(c) = 2c^2 - 5c$

3. Find
$$2f(-5) + 3g(-2)$$

$$f(-5) = 2(-5) - 3 = -13$$

$$= -26 + 54$$

$$g(-2) = 2(-2)^2 - 5(-2)$$

$$= 8 + 10$$

$$= 18$$

Use these two functions: f(x) = 2x - 3 $g(c) = 2c^2 - 5c$

2. Find
$$8g(3) - 5g(2)$$
 $8(3) - 5(-2)$

$$g(3) = 2(3)^{2} - 5(3) = 24 + 10$$

$$= 18 - 15$$

$$= 3$$

$$g(z) = 2(z)^2 - 5(z)$$
= 8 -10
= -2

Relation: A set of ordered pairs

A bunch of points

Know the difference between these terms and be able to identify a relation using the correct one.

> **Function** Not a Function VS.

Function: A relation such that every domain is paired with exactly one range.

How do you tell if a graph represents a function?

Vertical Line Test: If any vertical line passes through a graph more than once, then the graph is NOT a function.

Does each relation represent a function?

A.

Χ	Υ
7	3
6	-1
-2	0
10	-8
1	3

No x-value repeats.

NO

В.

Χ	Υ
4	-6
-2	8
3	7
4	1
0	-5

The x-value of 4 is paired with two different y-values.

Does each relation represent a function? B.

A.

Does each relation represent a function?

Yes, no vertical line will ever touch the graph more than once.

No. the red line touches the graph more than once.

These three points of intersection represent the same x-value being paired with three different y-values.

Use the graphs of these two functions shown to answer the following questions. Give interval answers using interval notation.

$$f(x) = \frac{1}{2}x + 3$$

$$f(x) = \frac{1}{2}x + 3$$
 $g(x) = -x + 6$

1.
$$f(x) = g(x)$$

2.
$$f(x) > g(x)$$

3.
$$f(x) < g(x)$$

Given two functions, f(x) and g(x) and their graphs:

When does
$$f(x) = g(x)$$
?

When is f(x) > g(x)?

When is f(x) < g(x)?

Use the graphs of these two functions shown to answer the following questions. Give interval answers using interval notation.

$$f(x) = \frac{1}{2}x + 3$$
 $g(x) = -x + 6$

1.
$$f(x) = g(x) \chi = 2$$

2.
$$f(x) > g(x)$$
 (2, ∞)
When $f(x)$ is a bove $g(x)$

3.
$$f(x) < g(x)$$
 $(-\infty, z)$
when $f(x)$ is below $g(x)$

Use the graphs of these two functions shown to answer the following questions. Give answers that are intervals in interval notation.

$$f(x) = -|x - 2| + 4$$

$$f(x) = -|x-2| + 4$$
 $g(x) = -\frac{1}{5}x + 2$

1.
$$f(x) = g(x)$$

2.
$$f(x) > g(x)$$

3.
$$f(x) < g(x)$$

Use the graphs of these two functions shown to answer the following questions. Give answers that are intervals in interval notation.

$$f(x) = x^2 + x - 2$$
 $g(x) = -x + 1$

1.
$$f(x) = g(x)$$

2.
$$f(x) > g(x)$$

3.
$$f(x) < g(x)$$

Use the graphs of these two functions shown to answer the following questions. Give answers that are intervals in interval notation.

$$f(x) = -|x-2| + 4$$
 $g(x) = -\frac{1}{5}x + 2$

1.
$$f(x) = g(x)$$
 $X = 0,5$

2.
$$f(x) > g(x)$$
 (0,5)
when $f(x)$ is above $g(x)$

Use the graphs of these two functions shown to answer the following questions. Give answers that are intervals in interval notation.

$$f(x) = x^2 + x - 2$$
 $g(x) = -x + 1$

1.
$$f(x) = g(x)$$

1.
$$f(x) = g(x)$$
 $\times = -3$,)

You can now finish Hwk #4: Practice Sheet.