Sec 14-1: Trigonometric Identities

A trigonometric identity is an equation that is true for all values of x that are in the domain of the functions.

An equation in which both sides are

- ALWAYS equal
- The same
- Identical

Tools to use when simplifying Trigonometric Expressions:

Reciprocal identities

$$\csc \theta = \frac{1}{\sin \theta}$$

$$\csc \theta = \frac{1}{\sin \theta} \qquad \qquad \sec \theta = \frac{1}{\cos \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

Simplifying Trigonometric Expressions:

A trigonometric expression is an expression that contains trigonometric functions. Like all mathematical expressions, trigonometric expressions do not contain an equal sign (=).

Tangent and cotangent identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

The Pythagorean Identity:

Because:
$$x = cos\theta$$

 $y = sin\theta$
 $r = 1$

substituting for x, y, and r we get:

$$(\cos\theta)^2 + (\sin\theta)^2 = 1$$

this is usually written as:

$$\cos^2\theta + \sin^2\theta = 1$$

Using the Pythagorean Theorem we have:

$$x^2 + y^2 = r^2$$

Pythagorean Identities:

$$Sin^2\theta + Cos^2\theta = 1$$

rearranging this Pythagorean Identity leads to the following:

$$Sin^2\theta = 1 - Cos^2\theta$$

and
$$Cos^2\theta = 1 - Sin^2\theta$$

Pythagorean identities

The Original Pythagorean Identity: $\cos^2 \theta + \sin^2 \theta = 1$

this original Pythagorean Identity can be turned into two other ones:

$$\frac{\cos^2\theta}{\cos^2\theta} + \frac{\sin^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta} \longrightarrow 1 + \tan^2\theta = \sec^2\theta$$

$$\frac{\cos^2\theta}{\sin^2\theta} + \frac{\sin^2\theta}{\sin^2\theta} = \frac{1}{\sin^2\theta} \longrightarrow 1 + \cot^2\theta = \csc^2\theta$$

Strategies for Simplifying Expressions

- 1) Change the expression into sines and cosines.
- 2) Look to use known formulas for purposes of substitution.
- 3) If there are fractions, gain a common denominator.
- 4) Use algebraic manipulations, like factoring, distributing, ...
- 5) If a strategy or substitution proves not to help, try something different.

When you are simplifying a trigonometric expression you need to:

- 1. Know the rules.
- 2. Follow the rules.

usually in a form similar to: sinx/sinx which is quite often used to get common denom.

- 3. Recognize that you can only multiply by
- 4. Recognize that you can only add .

The rules come from definitions or identites that we have already proven.

Trigonometric Tools:

Basic Identities:

$$Tan\theta = \frac{Sin\theta}{Cos\theta}$$

$$Cot\theta = \frac{1}{Tan\theta} = \frac{Cos\theta}{Sin\theta}$$

$$Csc = \frac{1}{Sin\theta}$$

$$Sec = \frac{1}{Cos\theta}$$

Pythagorean Identities:

$$Sin^{2}\theta + Cos^{2}\theta = 1$$

$$Sin^{2}\theta = 1 - Cos^{2}\theta$$

$$Cos^{2}\theta = 1 - Sin^{2}\theta$$

$$Tan^{2}\theta + 1 = Sec^{2}\theta$$

$$1 + Cot^{2}\theta = Csc^{2}\theta$$

Simplify each trig expression:

1. sinx cotx

2.
$$\frac{\sec x}{\csc x} = \frac{\frac{1}{\cos x}}{\frac{1}{\sin x}}$$
$$= \frac{1}{\cos x} = \frac{\sin x}{\cos x}$$
$$= \frac{\sin x}{\cos x} = \frac{\sin x}{\cos x}$$

Simplify each trig expression:

5.
$$\frac{\tan^2 x + 1}{1 + \cot^2 x} = \frac{\sec^2 x}{\sec^2 x}$$

$$= \frac{1}{\cos^2 x}$$

$$= \frac{1}{\cos^2 x}$$

$$= \frac{\sin^2 x}{\cos^2 x}$$

$$= \frac{\sin^2 x}{\cos^2 x}$$

$$= \frac{\sin^2 x}{\cos^2 x}$$

$$6. \frac{1 - \cos^2 x}{\sin^2 x}$$

$$= \frac{\sin^2 x}{\sin^2 x}$$

$$= \frac{\sin^2 x}{\sin^2 x}$$

$$= \frac{\sin^2 x}{\sin^2 x}$$

Simplify each trig expression:

3. cosx cscx

$$\frac{\cos x \sec x}{\tan x} = \frac{\cos \cdot \cos x}{\sin x}$$

$$= \frac{\sin x}{\cos x}$$

$$= \frac{\sin x}{\cos x}$$

$$= \cos x \cos x$$

$$= \frac{\sin x}{\cos x}$$

$$= \cos x \cos x$$

$$= \cos x$$

$$= \cos x \cos x$$

$$= \cos x$$

$$= \cos x \cos x$$

$$= \cos x$$

Simplify each trig expression:

7. $(Tanx + Cotx)(Sinx \cdot Cosx)$

$$\frac{\sin^2 x}{\cos x \cdot \tan x} = \frac{\sin^2 x}{\cos x \cdot \sin^2 x}$$

$$= \frac{\sin^2 x}{\cos x}$$

$$= \frac{\sin^2 x}{\cos x}$$

$$= \frac{\sin^2 x}{\cos x}$$

You can now finish Hwk #24: Sec 14-1

Page 780.

Problems: 18, 20-23, 28, 30, 32-34

No work = No credit