Simplify each trigonometric expression.

$$Sec_x - Cos_x$$

Secx

$$\frac{\frac{1}{\cos s} - \cos s}{\frac{1}{\cos s} - \cos s}$$

$$= (-\cos^2 s)$$

$$= (-\cos^2 s)$$

Cosx(1 + Tan²x)
$$= \cos \left(\sec^{2} \right)$$

$$= \cos \frac{1}{\cos^{2}}$$

$$= \frac{1}{\cos^{2}}$$

$$= \sec x$$

$$= \frac{\sin}{\sin^2}$$

$$= \frac{1}{\sin} = \cos x$$

$$\sin^2 x$$

 $Cosx \cdot Tanx$

$$\frac{\sin^2 \frac{\sin^2 - \sin^2 - \sin^$$

You can now finish Hwk #24: Sec 14-1

Page 780.

Problems: 18, 20-23, 28, 30, 32-34

$$\frac{Sec\theta}{Cot\theta + Tan\theta}$$

$$\frac{Cos}{cos} \cdot \frac{Cos}{sin} + \frac{Sin}{cos} \cdot \frac{Sin}{sin} = \frac{Cos^2 + sin^2}{sin \cdot cos}$$

$$\frac{Cos}{cos} \cdot \frac{Cos}{sin} + \frac{Sin}{cos} \cdot \frac{Sin}{sin} = \frac{Cos^2 + sin^2}{sin \cdot cos}$$

$$\frac{Cos}{cos} \cdot \frac{I}{sin} \cdot \frac{Sin}{sin} = \frac{Sin}{cos} \cdot \frac{Sin}{sin} \cdot \frac{Sin}{sin} \cdot \frac{Sin}{sin} = \frac{Sin}{sin} \cdot \frac{S$$

$$\frac{Secx}{Cosx} = \frac{Tanx}{Cotx}$$

$$= \frac{\frac{1}{Cos}}{\frac{1}{Cos}} = \frac{\frac{SiN}{Cos}}{\frac{1}{Cos}}$$

$$= \frac{\frac{1}{Cos} \cdot \frac{1}{Cos}}{\frac{1}{Cos}^{2}} = \frac{\frac{Sin^{2}}{Cos^{2}}}{\frac{1}{Cos^{2}}}$$

$$= \frac{\frac{1}{Cos^{2}}}{\frac{1}{Cos^{2}}} = \frac{\frac{Cos^{2}}{Cos^{2}}}{\frac{1}{Cos^{2}}} = \frac{\frac{Cos^{2}}{Cos^{2}}}{\frac{1}{Cos^{2}}}$$

this factors using difference of perfect squares
$$\frac{\sin^4(x) - \cos^4(x)}{\sin^2(x) - \cos^2(x)} = \frac{\left(\sin^2 + \cos^2\right) \left(\sin^2 - \cos^2\right)}{\sin^2(x) - \cos^2(x)} = \frac{\left(\sin^2 + \cos^2\right) \left(\sin^2 - \cos^2\right)}{\sin^2(x) - \cos^2(x)}$$

You can now finish Hwk #25:

Practice Sheet: Sec 14-1

Simplifying Trigonometric Expressions

When trying to verify/prove an identity you CAN'T do the following:

- Move terms from one side of the equation to the other side
- Multiply/divide/square/square root both sides of the equation
- Add/Subtract from both sides of the equation

You are **NOT** solving

You are trying to show the two sides of the equation are equal which means you don't know they are equal....YET.

Verifying trig identities:

Showing that the two sides of the equation really are equal.

Two basic techniques:

 Work on one side only and make it look like the other side.

or

 Work on both sides until they look the same.

Verify this identity:

$$1 + CotA = CscA(SinA + CosA)$$

$$= \frac{1}{\sin(\sin + \cos)}$$

$$= 1 + \frac{\cos}{\sin}$$

$$1 + \cot A - 1 + \cot A$$