Measures of Central Tendancy:

- Mean
- Median
- Mode

These give a general location for the "middle" of the data

Measures of Variability:

- Range
- Interquartile Range
- Standard Deviation

These give an idea of how spread out the data is and how much variation there is amongst the data

Range: Max Value - Min Value

Gives a measure of the Spread in a data set

Range by itself doesn't describe the whole data set because it is found using only 2 data values.

Which would be more significant?

A small range OR A large range?

a smaller range would indicate not only that the max and min are close together, but, therefore, all the rest of the data is also relatively close together.

Interquartile Range:

Upper Quartile - Lower Quartile

Gives a measure of how spread out the middle 50% is

Similar to Range it doesn't tell the whole story because it is found using only 2 data values.

Standard Deviation:

- A measure of how much variation there is in a set of data.
- Used by itself it doesn't tell you that much about a data set
- Most of the time it's used to compare sets of data
- Standard Deviation is a measure of how far on average each data value is from the mean.
- Bigger Standard Deviation means more variation

Standard
Deviation is
similar to the
measure spread
out people are in
a room.

Standard Deviation is similar to the average distance each person is from the center of the room

Large or small Standard Deviation?

Is there a little or a lot of variation in the data set?

Small: They are all "pretty" close to the center of the room and all about the same distance from the center.

Large or small Standard Deviation?

Is there a little or a lot of variation in the data set?

Larger: Their distances from the center of the room vary more and are for the most part further away than the previous picture.

Symbol for Standard Deviation:

C Lower case Sigma

Standard Deviation Formula:

$$\sigma = \sqrt{\frac{\sum (x - \overline{x})^2}{n}}$$

- 1. Find the mean \bar{x}
- 2. Find the difference between each value & the mean $x \overline{x}$
- 3. Square the difference $(x \overline{x})^2$
- 4. Find the sum of these squares $\sum (x \overline{x})^2$
- 5. Find the mean of these squares $\frac{\sum (x-\overline{x})^2}{n}$
- 6. Take the square root. $\sqrt{\frac{\sum (x \overline{x})^2}{n}}$

*Footnote: Why square the differences?

If we just added up the differences from the mean ... the negatives would cancel the

Mean = 0
$$\frac{4+4+4}{4} = 0$$

So that won't work. How about we use absolute values ?

Mean = 0
$$\begin{vmatrix} +4+4 \\ -4 \\ -4 \end{vmatrix}$$
 $\begin{vmatrix} |4|+|4|+|-4|+|-4| \\ 4 \end{vmatrix}$ = $\frac{4+4+4+4}{4}$ = 4

That looks good (and is the Mean Deviation), but what about this case:

Mean =
$$0^{\frac{17}{11}}$$
 $\frac{|7| + |1| + |-6| + |-2|}{4} = \frac{7 + 1 + 6 + 2}{4} = \frac{4}{4}$

Oh No! It also gives a value of 4, Even though the differences are more spread out!

So let us try squaring each difference (and taking the square root at the end):

Mean = 0
$$\frac{4^{4+4}}{4^{4+4}} = \sqrt{\frac{4^{2}+4^{2}+4^{2}}{4}} = \sqrt{\frac{64}{4}} = \frac{4}{4}$$
Mean = 0
$$\sqrt{\frac{4^{2}+4^{2}+4^{2}+4^{2}}{4}} = \sqrt{\frac{64}{4}} = \frac{4}{4}$$

That is nice! The Standard Deviation is bigger when the differences are more spread out ... just what we want!

Using this set of numbers: 5, 6, 7, 9, 13, 15, 20, 23, 31, 40

To find the Standard Deviation using the graphing calculator:

- 1. Enter the numbers into a List
- 2. Perform 1-Var Stats
- 3. Look for σx

$$\sigma x = 11.04$$

	А	В	С
1		5	15
2		6	20
3		7	23
4		9	31
5		13	40
6			
7			11.0404

=stdevp(B1:C5)

=stdevp(B1:C5)

p stands for Population which means you are using ALL the data.

Standard Deviation Calculator Link on my blog:

Population Standard Deviation - uses all of the data values

Standard Deviation:

Mostly used to compare two sets of data

Which set of data has more variation?

Set 1: 95, 100, 105, 110, 115, 120, 125, 130

 $\sigma = 11.456$

Set 2: 26, 27, 37, 39, 44, 50, 58, 61

 $\sigma = 12.224$

The greater the Standard Deviation the more variation there is in the set of data.

Therefore, Set 2 has more variation.

Which set of data has more variation?

Set A: 12, 17, 22, 27, 32, 37, 42, 47, 52, 57

 $\sigma_{x} = 14.36$

Set B: 85, 78, 79, 83, 81, 84, 86, 75, 82, 81

 $\sigma_{x} = 3.2$

Due to it's greater Standard Deviation, Set A has more variation.

Which set of data has more variation?

Set 1: 5,6,8,10,13,15,19

 $\sigma = 4.703$

Set 2: 48,50,51,53,56,57,60

 $\sigma = 3.959$

Due to it's greater Standard Deviation, Set A has more variation.