1. Find the probability that a randomly chosen point in the square lies in the shaded region. Give answer as a percent rounded to the nearest hundredth. The radius of each circle is 4 in.

P(Shaded Region) =

- 2. The probability that I wear a green shirt is $\frac{3}{8}$, the probability that I wear black pants is $\frac{2}{7}$, and the probability that I wear blue pants is $\frac{5}{12}$. Find each probability as a percent to the nearest tenth.
- a). The probability that I wear a green shirt or I wear black pants to work today.

P(green shirt or black pants) =

b) The probability that I wear a pair of black pants or a pair of blue pants.

P(black pants or blue pants) =

- 3. You go into the back yard and shoot some arrows at a target. The package of arrows has 3 with red feathers, 8 with blue feathers, and 2 with green feathers. You pull out an arrow at random and shoot it at the target. You missed the bulls-eye so you grab another arrow at random and shoot it, etc. Find each probability as a fraction without reducing.
- a) P(green arrow and blue arrow)= arrow)=

b) P(red arrow and red arrow and green

Bellwork

Alg 2B Monday, April 16, 2018

1. Find the probability that a randomly chosen point in the square lies in the shaded region. Give answer as a percent rounded to the nearest hundredth. The radius of each circle is 4 in. Area of Big Sq = 162 = 256

P(Shaded Region) =

Area of shadad region

$$= 8^2 - \pi(4)^2$$

aded Region) =

Area of shaded Region

Area of Big Sq = $8^2 - \pi/4$)²

= $\frac{64 - 16\pi}{256} = \frac{5.370}{256} = 64 - 16\pi$ There are other ways to find this answer

- 2. The probability that I wear a green shirt is $\frac{3}{8}$, the probability that I wear black pants is $\frac{2}{7}$, and the probability that I wear blue pants is $\frac{5}{12}$. Find each probability as a percent to the nearest tenth.
- a). The probability that I wear a green shirt or I wear black pants to work today.

P(green shirt or black pants) =

$$\frac{3}{8} + \frac{2}{7} - \frac{3}{8} \cdot \frac{2}{7} = 55.4\%$$

NOT MUTUALLY EXCLUSINE (They CAN happon at the same time)

b) The probability that I wear a pair of black pants or a pair of blue pants.

MUTUALLY EXCLUSIVE (these won't happen at the same time)

$$\frac{2}{7} + \frac{5}{12} = 70.2\%$$

- You go into the back yard and shoot some arrows at a target. The package of arrows has 3 with red feathers, 8 with blue feathers, and 2 with green feathers. You pull out an arrow at random and shoot it at the target. You missed the bulls-eye so you grab another arrow at random and shoot it, etc. Find each probability as a fraction without reducing. TOTAL OF 13 ARROWS
- a) P(green arrow and blue arrow)= arrow)=

$$= \frac{2}{13} \cdot \frac{8}{12}$$

$$= \frac{16}{156}$$

b) P(red arrow and red arrow and green

$$= \frac{3}{13} \cdot \frac{2}{12} \cdot \frac{2}{11}$$

$$= \frac{12}{1716}$$