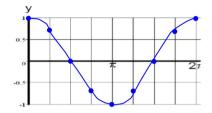


These are all the same as for y=Sinx!

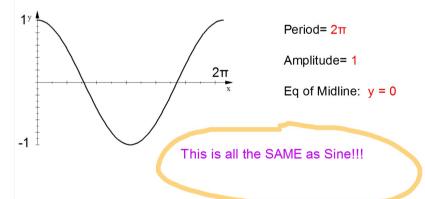
The Parent Function: y = Sinx

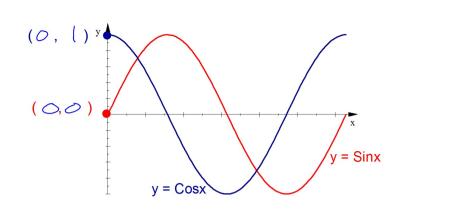

Period= 2π

Amplitude= 1

Eq of Midline: y = 0

One cycle of the parent Sine function looks like a sideways "S".


What does one period of the parent Cosine function look like?



The "first" period of a Cosine looks like a "U"-shape or similar to a parabola.

Where does Cosine "start"? Cosine "starts" at a MAXIMUM.

The Parent Function: y = Cosx

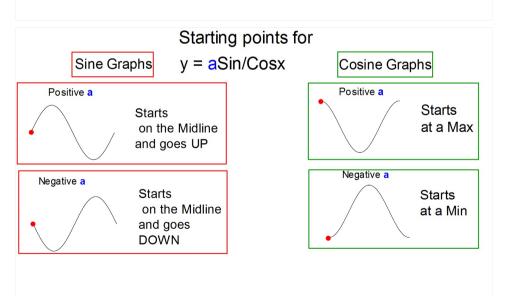
Starting points and direction for the Parent Functions.

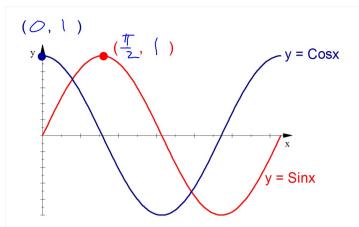
$$y = Sinx$$

Starts on the midline then goes up.

$$y = Cosx$$

Starts at a maximum.


How are the graphs of Cosx and Sinx the SAME?


The have the same Period, Amplitude, and Midline.

Both "start" on the y-axis (x=0)

How are the graphs of Cosx and Sinx DIFFERENT?

Where they start.

y = asinbx

a = Amplitude (vertical Stretch or Shrink factor)

a<0 is an x-axis reflection (upside down)

Period =
$$\frac{2\pi}{b}$$
 $b = \frac{2\pi}{Period}$

ALSO

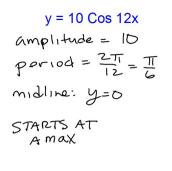
How else is the graph of Cosx related to the graph of Sinx?

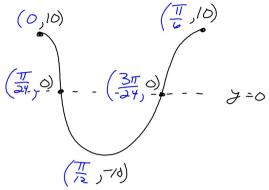
They are horizontal translations of each other.

To get the Sinx you translate Cosx 90° to the right Sinx = Cos(x-90°)

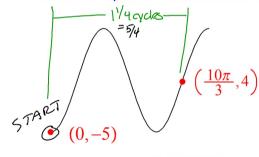
To get the Cosx you translate Sinx 90° to the left Cosx = Sin(x+90°)

y = acosbx


a = Amplitude (vertical Stretch or Shrink factor)


a<0 is an x-axis reflection (upside down)

Period =
$$\frac{2\pi}{b}$$
 $b = \frac{2\pi}{Period}$

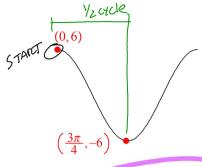

This is all the same as Sine!!!

Graph one period of this Cosine Function. Label the coordinates of all maximums, minimums, and pts on the midline.

Write the equation of this Cosine Function.

$$period = \frac{10\pi}{3} = \frac{10\pi}{3}.4$$

$$= \frac{8\pi}{3}$$


EQ:
$$y = -9 \cos\left(\frac{3x}{4}\right) + 9$$

$$b = \frac{2\pi}{8\pi} = 2\pi.3$$

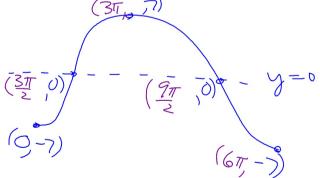
$$b = \frac{3}{4}$$

$$5 = \frac{2\pi}{8\pi} = 2\pi \cdot \frac{3}{8\pi} = \frac{3}{4}$$

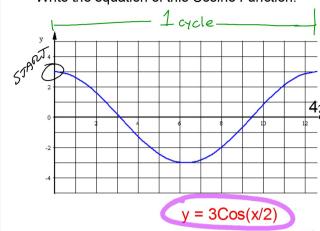
Write the equation of this Cosine Function.

EQ:
$$y = 6 \cos \frac{4x}{3}$$

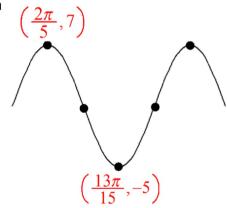
period =
$$\frac{3\pi}{4} = \frac{3\pi}{4} \cdot 2$$

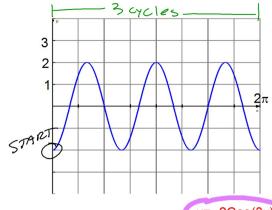

$$= \frac{3\pi}{2}$$

$$= \frac{3\pi}{2}$$


$$= \frac{2\pi}{2} = 2\pi \cdot 2$$

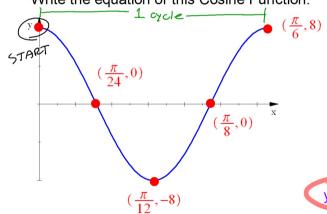
$$= \frac{2\pi}{2} = 2\pi \cdot 2$$


Graph one period of: $y = -7Cos(\frac{x}{3})$ Period = $\frac{2\pi}{\sqrt{3}} = 6\pi$ Label the coordinates of all x-intercepts, maximums, and minimums.


Write the equation of this Cosine Function.

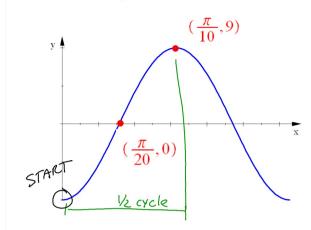
1. Fill in the missing coordinates and write the equation of this Cosine **Function**

Write the equation of this Cosine Function.



midline: y=0 K=0Amplitude= Z Q=-Z $Period=\frac{2\pi}{3}$

$$D = \frac{2\pi}{3} = 2\pi \cdot \frac{3}{2\pi}$$


y= -2Cos(3x)

Write the equation of this Cosine Function:

midline: y=0 K=0 amplitude = 8 $\alpha = 8$ period = To b=12

Write the equation of this Cosine Function:

Amp = 9
$$A=-9$$
midline: y=0
$$K=0$$

$$Period = T \cdot 2 = T$$

$$b = T = 2T \cdot 5$$

$$b = T$$

You can now do Hwk #10

Sec 13-5

Practice Sheet