Alg 2B Friday, March 16, 2018 Bellwork

1. Describe the Phase Shift (distance and direction) for this Sine Function: $y = -11 \text{Sin}(4x - \frac{3\pi}{2}) + 5$

2.
$$y = x^2 - 6x + 8$$

The equation above represents a parabloa in the xy-plane. Which of the following equivalent forms of the equation displays the x-intercepts of the parabola as constants or coefficients?

A)
$$y - 8 = x^2 - 6x$$

B)
$$y + 1 = (x - 3)^2$$

B)
$$y + 1 = (x - 3)^2$$
 C) $y = x(x - 6) + 8$

D)
$$y = (x-2)(x-4)$$

$$3. ax + by = 12$$
$$2x + 8y = 60$$

In the system of equations above, a and b are constants. If the system has infinitely many solutions, what is the value of $\frac{a}{h}$?

$$4. \ y = 3$$
$$y = ax^2 + b$$

In the system of equations above, a and b are constants. For which of the following values of a and bdoes the system of equations have exactly two real solutions?

A)
$$a = -2, b = 2$$

B)
$$a = -2, b = 4$$
 C) $a = 2, b = 4$

C)
$$a = 2, b = 4$$

D)
$$a = 4, b = 3$$

Bellwork Alg 2B Friday, March 16, 2018

1. Describe the Phase Shift (distance and direction) for this Sine Function: $y = -11\sin(4x - \frac{3\pi}{2}) + 5$

FACTOR OUT THE 4:
$$y = -11 \sin(4(x - \frac{31}{8})) + 5$$

2.
$$y = x^2 - 6x + 8$$

The equation above represents a parabloa in the xy-plane. Which of the following equivalent forms of the equation displays the x-intercepts of the parabola as constants or coefficients?

A)
$$y - 8 = x^2 - 6x$$

B)
$$y + 1 = (x - 3)^2$$

C)
$$y = x(x-6) + 8$$

A)
$$y-8=x^2-6x$$
 B) $y+1=(x-3)^2$ C) $y=x(x-6)+8$ D) $y=(x-2)(x-4)$

FACTORED FORM LEADS TO ZEROS (X-INTERCEPTS) of 254

3.
$$ax + by = 12$$

 $2x + 8y = 60$

In the system of equations above, a and b are constants. If the system has infinitely many solutions, what is the value of $\frac{a}{h}$?

TO HAVE INFINITELY MANY SOLUTIONS LINES MUST BE PARALLEL

CHANGE BOTH EQS TO SLOPE-INT FORM! (Same slope, different, y-int)

$$y = \frac{12-ax}{b} = \frac{9}{6x} + \frac{12}{b}$$

$$y = \frac{12-ax}{b} = \frac{-9}{b}x + \frac{12}{b}$$
 $y = \frac{60-2x}{8} = \frac{15}{9}x + \frac{15}{2}$

SLOPES MUST BE =

4.
$$y = 3$$

$$y = ax^2 + b$$

In the system of equations above, a and b are constants. For which of the following values of a and b does the system of equations have exactly two real solutions?

A)
$$a = -2, b = 2$$

A)
$$a = -2, b = 2$$
 B) $a = -2, b = 4$ C) $a = 2, b = 4$ D) $a = 4, b = 3$

C)
$$a = 2, b = 4$$

D)
$$a = 4, b = 3$$

IST USE SUBSTITUTION:

$$\frac{3-b}{a} = X^2 \implies X = \pm \sqrt{\frac{3-b}{a}}$$