If an angle is measured in degrees you can find a coterminal angle by..

Adding or Subtracting 360° or any multiple of 360°.

If an angle is measured in radians you can find a coterminal angle by..

Adding or Subtracting 2π or any multiple of 2π .

Find the measure of an angle between 0 and 2π that is coterminal to the given angle.

1.
$$\theta = \frac{41\pi}{3}$$

Keep subtracting 2π in the form of $6\pi/3$ until the angle is between 0 and 2π

$$\frac{4|\pi}{3} - \frac{6\pi}{3} = \frac{35\pi}{3}$$

$$\frac{35\pi}{3} - \frac{6\pi}{3} = \frac{29\pi}{3}$$

$$\frac{29\pi}{3} - \frac{6\pi}{3} = \frac{23\pi}{3}$$

$$\frac{23\pi}{3} - \frac{6\pi}{3} = \frac{17\pi}{3}$$

$$\frac{17\pi}{3} - \frac{6\pi}{3} = \frac{11\pi}{3}$$

$$\frac{17\pi}{3} - \frac{6\pi}{3} = \frac{11\pi}{3}$$

$$\theta = -\frac{57\pi}{4}$$

Keep adding 2π in the form of $8\pi/4$ until the angle becomes positive (is between 0 and $2\pi)$

Adding $8\pi/4$ a bunch of times is like adding a multiple of $8\pi/4$. The first multiple of $8\pi/4$ that is greater than $57\pi/4$ is $64\pi/4$

$$-\frac{57\pi}{4} + \frac{64\pi}{4} = \frac{7\pi}{4}$$

Two angles, measured in degrees, are coterminal if....

the distance between them is a multiple of 360°

Two angles, measured in radians, are coterminal if....

the distance between them is a multiple of 2π

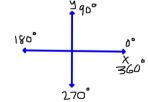
0

In which quadrant or on which axis does the terminal side of each angle lie?

1.
$$\theta = -1040^{\circ}$$

add 360° three times and get 40°. This is in

Quadrant I



2.
$$\theta = 975^{\circ}$$

subtract 360° twice and get 255°. This is in

Quadrant III

In which quadrant or on which axis does the terminal side of each angle lie?

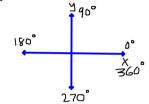
3.
$$\theta = 4230^{\circ}$$

4.
$$\theta = -1942^{\circ}$$

subtract 360° 11 times and get 270°. This is on the

add 360° 6 times and get 218°. This is in

Neg y-axis



Quadrant III

In which quadrant or on which axis does the terminal side of each angle lie?

7.
$$\theta = 37\pi$$

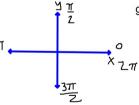
 $\theta = \frac{43\pi}{6}$ subtract 2π in the form $12\pi/6$

Every odd number of $\boldsymbol{\pi}$ is on the

subtract $12\pi/6$ three times and get $7\pi/6$. This is in

Neg x-axis

because if you start at 0 and keep adding 2π you'll end up on the pos x-axis (even number of π). Since an odd number of π is always just π away from and even number of π , you will always end up the neg x-axis for an odd number of π .



Quadrant III

In which quadrant or on which axis does the terminal side of each angle lie?

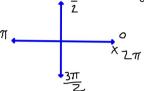
5.
$$\theta = -\frac{23\pi}{8}$$
 add 2π in the form $16\pi/8$

6. $\theta = \frac{11\pi}{2}$ subtract 2π in the form $4\pi/2$

add $16\pi/8$ twice and get $9\pi/8$. This is in

subtract $4\pi/2$ twice and get $3\pi/2$. This is on

Quadrant III



Neg y-axis

Hwk #5: Sec 13-2

Due tomorrow

Page 722

Problems 1-3, 12-15, 39, 40, 45 - 48

Short Quiz over Sections 13-2 and 13-3

Tuesday

review is already on my blog

The Unit Circle:

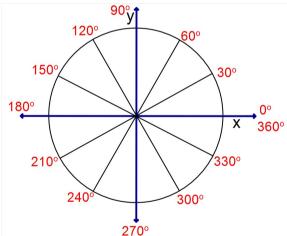
- Center is the origin
- Radius = 1
- Used to find the EXACT value of Sinθ, Cosθ, and Tanθ without using a calculator.
- Uses the Special Right Triangle relationships.

Fill in the angles with degrees.

Starting with angles related to 30°-60°-90°

The unit circle is used to find the EXACT value of Sin θ , Cos θ , and Tan θ using the special right triangles.

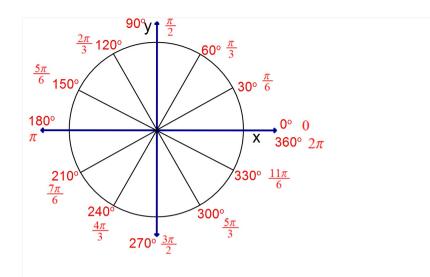
This means all the angles on the unit circle are related to either 30°, 60°, or 45°.

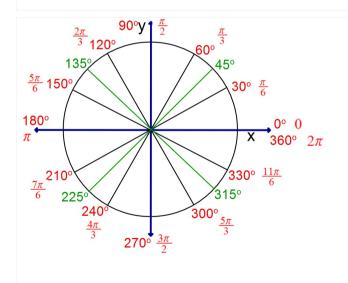


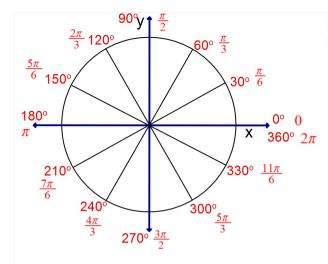
Now fill in with Radians. Starting with the 30°-60°-90° angles you just filled in.

$$30^{\circ} = 30^{\circ} \cdot \frac{\pi}{180^{\circ}}$$

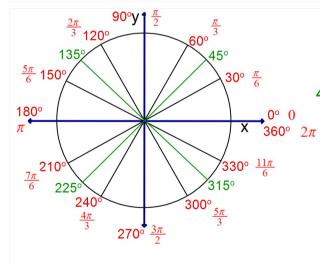
When you move from one angle to the next add another $\pi/6$ but reduce whenever possible.







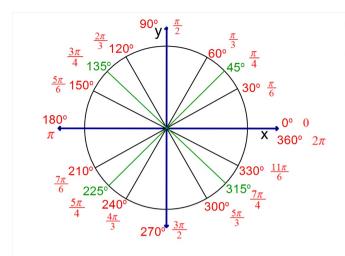
Finish the degrees related to 45°-45°-90°



Finish filling in with Radians. 45°-45°-90°

$$45^{\circ} = 45^{\circ} \cdot \frac{\pi}{180^{\circ}}$$

Every time you move 45° you add another $\pi/4$ but reduce whenever possible.



What patterns do you see?