Recursive Formula for a Geometric Sequence:

1st: Find r.
$$r = \frac{14}{3} = 2$$

$$a_1 = 3.5$$

 $a_n = 3.5$
 $a_n = a_{n-1} \cdot 7$

The recursive formula for ANY geometric sequence:

$$a_1$$
 = Given First Term

$$a_n = a_{n-1} \cdot r$$

Write a recursive formula for this sequence:

5346, 1782, 594, 198, ...

$$a_{n} = 5346$$
 $a_{n} = a_{n-1} \cdot \frac{1}{3} \text{ or } a_{n-1} = 3$

Write a recursive formula for this sequence:

$$G_{n} = 3$$

$$G_{n} = (G_{n-1})(-4)$$

Explicit Formula for a Geometric Sequence:

Find r.
$$r = \frac{66}{11} = 6$$

$$a_1 = 11$$

$$a_2 = 11(6)$$

$$a_3 = 11(6)(6)$$

$$a_4 = 11(6)(6)(6)$$

$$a_5 = 11(6)(6)(6)(6)$$

Explicit Formula is:

$$a_n = 11(6)^{n-1}$$

Explicit Formula for ANY geometric sequence:

$$a_n = a_1 \cdot r^{n-1}$$

Write an explicit formula for this sequence.

$$a_{n} = 8(2.5)^{n-1}$$

Find the 14th term for this sequence:

$$a_{14} = 3(-2)^{n-1}$$
 $a_{14} = 3(-2)^{14-1} = -24,576$

Write an explicit formula for this sequence.

22032, 3672, 612, 102, ...
$$=\frac{102}{6}$$

Geometric $V = \frac{1}{6}$ $Q_n = 22032(\frac{1}{6})^{n-1}$

Find the next 3 terms in each sequence then state if it's Arithmetic, Geometric, or Neither?

2. 11, 22, 33, 44, ...

Arithmetic: Adding 11

Neither: Multiplying by the next even number.

81,121.5, 62.25

Neither: adding the next power of three.

Geometric: Multiplying by 1.5

134, 377, 1/06

You can now finish Hwk #31

Sec 11-3

Due tomorrow

Page 614

Problems 1-3, 6-8, 14, 23, 24, 31-34, 38, 44