Alg 2B Final Exam Review Chapter 10 Fall 2017

- 1. Write the equation of the circle whose center is (-8,3) with radius 4.
- 2. a) Write the equation of the circle whose center is (9,-5) and the point (4,7) is on the circle.
 - b) Write the equation of the circle that has a diameter with the following endpoints: (5,-6)&(13,4)
- 3. Find the coordinates of the center and the radius of this circle: $(x+3)^2 + (y+2)^2 = 121$
- 4. Write the equation of the parabola whose vertex is (0,0) and directrix is y=-4
- 5. Write the equation of the parabola whose vertex is (0,0) and focus is (-9,0)
- 6. State the coordinates of the focus and the equation of the directrix for the parabola $x = 20y^2$
- 7. State the coordinates of the focus and the equation of the directrix for the parabola $y = -7x^2$
- 8. Write the equation of the parabola whose focus is (4,-1) and vertex is (4,6)
- 9. State the coordinates of the vertices and foci and the slopes of the asymptotes for this hyperbola: $\frac{y^2}{25} \frac{x^2}{81} = 1$
- 10. State the coordinates of the center, vertices, and foci for this hyperbola: $\frac{(x+1)^2}{64} \frac{(y-3)^2}{36} = 1$
- 11. Write the equation of the hyperbola whose center is (0,0) and with vertices $(0,\pm3)$ and foci $(0,\pm7)$
- 12. Write the equation of the hyperbola with foci (-1,2) & (15,2) and with horizontal transverse 6 units long.
- 13. State the coordinates of the vertices, co-vertices, and foci of this ellipse: $\frac{x^2}{49} + \frac{y^2}{16} = 1$
- 14. State the coordinates of the vertices, co-vertices, and foci of this ellipse: $\frac{(x-5)^2}{25} + \frac{(y+8)^2}{169} = 1$
- 15. Write the equation of the ellipse whose center is (0,0), vertices are $(0,\pm 20)$, and minor axis is 30 units long.
- 16. Write the equation of the ellipse whose center is (0,0), foci are $(\pm 8,0)$, and vertices are $(\pm 11,0)$
- 17. Write the equation of the ellipse whose vertices are at (10,2) and (-8,2) and a co-vertex at (1,6)

1.
$$(x+8)^2 + (y-3)^2 = 16$$

2. (a)
$$(x-9)^2 + (y+5)^2 = 169$$
 (b) $(x-9)^2 + (y+1)^2 = 41$

3. Center
$$(-3, -2)$$
 Radius = 11

4.
$$y = \frac{1}{16}x^2$$

5.
$$x = -\frac{1}{36}y^2$$

6. Focus
$$(\frac{1}{80}, 0)$$
 Directrix $x = -\frac{1}{80}$

7. Focus
$$(0, -\frac{1}{28})$$
 Directrix $y = \frac{1}{28}$

8.
$$y = -\frac{1}{28}(x-4)^2 + 6$$

9. Vertices
$$(0,\pm 5)$$
 Foci $(0,\pm \sqrt{106})$ Asymptotes: $m=\pm \frac{5}{9}$

10. Center
$$(-1,3)$$
 Vertices $(7,3)$ and $(-9,3)$ Foci $(9,3)$ and $(-11,3)$

11.
$$\frac{y^2}{9} - \frac{x^2}{40} = 1$$

12.
$$\frac{(x-7)^2}{9} - \frac{(y-2)^2}{55} = 1$$

13. Vertices
$$(\pm 7,0)$$
 Co-vertices $(0,\pm 4)$ Foci $(\pm \sqrt{33},0)$

14. Center
$$(5,-8)$$
 Vertices $(5,5)$ and $(5,-21)$ Co-vertices $(10,-8)$ and $(0,-8)$ Foci $(5,4)$ and $(5,-20)$

$$15. \ \frac{x^2}{225} + \frac{y^2}{400} = 1$$

16.
$$\frac{x^2}{121} + \frac{y^2}{57} = 1$$

17.
$$\frac{(x-1)^2}{81} + \frac{(y-2)^2}{16} = 1$$