Alg 2B Parabola Summary Fall 2017

Parabola The set of all points P in a plane that are the same distance from a fixed line and a fixed point not on the line.

Focus: The fixed point. Located "inside" the parabola, c units away from the vertex.

<u>Directrix</u>: The fixed line. Located "outside" the parabola, *c* units away from the vertex. Perpendicular to the Line of Symmetry.

Vertex: Point exactly midway between the Focus and the Directrix.

Line of Symmetry: Line perpendicular to the Directrix containing the Focus and the Vertex.

Equation of a Parabola with vertex at (0,0):

Opens Up	Opens Down	Opens Right	Opens Left
$y = ax^2 \qquad a > 0$	$y = ax^2 \qquad a < 0$	$x = ay^2 \qquad a > 0$	$x = ay^2 \qquad x < 0$
Focus: $(0,c)$	Focus: $(0,-c)$	Focus: $(c,0)$	Focus: $(-c,0)$
Directrix: $y = -c$	Directrix: $y = c$	Directrix: $x = -c$	Directrix: $x = c$

Equation of a Parabola with vertex at (h, k):

Opens Up
$$a > 0$$
 Opens Down $a < 0$

$$y - k = a(x - h)^{2} \text{ or }$$

$$y = a(x - h)^{2} + k$$

$$y = a(x - h)^{2} + k$$

$$y = a(x - h)^{2} + k$$

Focus:
$$(h, k+c)$$
 Focus: $(h, k-c)$ Directrix: $y = k+c$

Opens Right
$$a > 0$$

$$x - h = a(y - k)^{2} \text{ or}$$

$$x = a(y - k)^{2} + h$$
Opens Left $a < 0$

$$x - h = a(y - k)^{2} \text{ or}$$

$$x = a(y - k)^{2} + h$$

$$x = a(y - k)^{2} + h$$

Focus:
$$(h+c,k)$$
 Focus: $(h-c,k)$ Directrix: $x=h-c$

$$\left[|a| = \frac{1}{4c} \right]$$
 and $\left[c = \frac{1}{4|a|} \right]$

c: distance from the Vertex to the Focus and from the Vertex to the Directrix.

a is the coefficient of x^2 or y^2

The bigger the value of |a|: the more narrow the parabola & the closer the Focus is to the Vertex.

The smaller the value of |a|: the wider the parabola and the farther the Focus is from the Vertex.