Bellwork

Alg 2B

Monday, December 18, 2017

Use the given formula to find the 4th, 5th, and 6th terms of each sequence.

1.
$$a_n = 2(n+1)^2 - 3$$

2.
$$a_1 = 10$$

$$a_n = 3(a_{n-1} - 4) + 2$$

Write a recursive formula for each sequence.

Write an explicit formula for each sequence.

Bellwork Alg 2B Monday, December 18, 2017

Use the given formula to find the 4th, 5th, and 6th terms of each sequence.

1.
$$a_n = 2(n+1)^2 - 3$$

2.
$$a_1 = 10$$

$$a_n = 3(a_{n-1} - 4) + 2$$

Write a recursive formula for each sequence.

Write an explicit formula for each sequence.

Bellwork Hrs 1-3

(1)
$$a_n = 2(n+1)^2 - 3$$

 $a_1 = 2(4+1)^2 - 3 = 47$
 $a_5 = 2(5+1)^2 - 3 = 69$
 $a_6 = 2(6+1)^2 - 3 = 95$

$$a_1 = 24$$
 $a_n = (a_{n-1})(1.5)$

(2)
$$a_1 = 10$$

 $a_2 = 3(10 - 4) + 2 = 20$
 $a_3 = 3(20 - 4) + 2 = 50$
 $a_4 = 3(50 - 4) + 2 = 140$
 $a_5 = 3(140 - 4) + 2 = 410$
 $a_6 = 3(410 - 4) + 2 = 1222$

$$a_1 = -12$$
 $a_1 = (a_{n-1}) - 4$