You can use a variable, such as $\underline{\underline{a}}$, with positive integer subscripts to represent the terms in a sequence.

1st term 2nd term 3rd term ... \downarrow \downarrow \downarrow \downarrow a_1 a_2 a_3 ...

Formulas used to generate Sequences:

Recursive Formula

A formula that gives any term by relating it to the previous term or terms.

Explicit Formula

A formula that allows you to find any term by using it's term #.

For example if I want to find the 20th term I can plug 20 into a formula and get just that term.

What notation identifies ANY term in a sequence?

Recursive Formula Examples:

Find the first 5 terms in this sequence:

$$a_{1} = 20$$

$$a_{n} = (a_{n-1}) \div 2 + 1$$

$$previous term$$

$$divided by 2 than add
$$t = 20 + 1$$

$$t = 20$$

$$t$$$$

Write the first 5 terms of this sequence.

$$a_1 = 1$$

$$a_2 = 8$$

$$a_n = (a_{n-1}) - (a_{n-2})$$

the previous two

$$\frac{1}{1}, \frac{8}{1}, \frac{7}{1}, \frac{1}{1}, \frac{-8}{1}$$

$$\frac{1}{1}, \frac{8}{1}, \frac{7}{1}, \frac{-1}{1}, \frac{-8}{1}$$

$$\frac{1}{1}, \frac{8}{1}, \frac{7}{1}, \frac{-1}{1}, \frac{-8}{1}$$

(a5 = a4 - a3

Write a recursive formula for this sequence.

Write a recursive formula for this sequence.

$$a_n = a_{n-1} - 7$$

Write a recursive formula for each sequence.

1.
$$1664, -416, 104, -26, ...$$

$$= -4 = -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$= -4$$

$$a_1 = 1664$$
 $a_n = (a_{n-1}) \cdot (-\frac{1}{4})$

13.5, 16, 18.5, 21, ...
$$\alpha_1 = 13.5$$

 $+2.5^{+}2.5$ $\alpha_2 = \alpha_{n-1} + 2.5$

Explicit Formula

A formula that allows you to find any term (a_n) by using it's term # (n).

The formula must use

n=1 to find the 1st term

n=2 to find the 2nd term

n=3 to find the 3rd term....

Find the 1st, 5th, and 10th term in this sequence.

$$a_n = (n + 1)(3)^{n-1}$$

$$a_1 = (1+i)(3)^{1-1} = 2 \cdot 3^{\circ} = 2 \cdot 1 = 2$$

$$a_5 = (5+1)(3)^{5-1} - 6(3)^{4} = 486$$

$$a_{5} = (5+1)(3)^{5-1} - 6(3)^{4} = 486$$

$$a_{10} = (10+1)(3)^{10-1} - 11(3)^{9} = 216513$$

Explicit Formula Example:

Find the 1st, 5th, and 10th term in this sequence.

$$a_n = 2n^2 - 1$$

$$a_1 = 2(i)^2 - 1 - 1$$

$$a_{10} = 2(10)^2 - 1 = 199$$

Write an explicit formula for this sequence.

$$a_n = 3$$

Write an explicit formula for this sequence.

$$a_n = 2n$$

Write an explicit formula for this sequence. $N = 1 \quad 2 \quad 3 \quad 4$

4. 10, 40, 90, 160 ...

$$a_n = (lo)(n^2)$$

Write an explicit formula for this sequence.

$$a_n = (10)(n+1)$$

You can now finish Hwk #29

Sec 11-1

Tomorrow for you!

Page 603

Problems 4-7, 13, 14, 18, 19, 34, 35, 46, 47