The Focus and the Directrix are located an equal distance from the Vertex and on opposite sides. The variable c is used to represent this distance. The relationship between a, the coefficient of x^2 or y^2 and c

is:
$$|a| = \frac{1}{4c}$$
 or $c = \frac{1}{4|a|}$

1. For each parabola, sketch and label the location of the focus (F), vertex (V), and directrix (D), then write down either $y = ax^2$ or $x = ay^2$ for the general form of the equation and tell if a is positive or negative.

- a) Gen Eq:
- b) Gen Eq:
- c) Gen Eq:
- d) Gen Eq:

a is

a is

a is

a is

Write the equation of each parabola. The vertex of each is the origin.

1. The Focus is (0,-2).

2. The Focus is $(\frac{1}{12}, 0)$.

EQ:

EQ:

3. The Directrix is the line y = -5.

EQ:

State the coordinates of the Focus and the Equation of the Directrix. The vertex is the origin for all of these.

4.
$$y = 7x^2$$

5.
$$x = 10y^2$$

Focus:

Focus:

Eq. of Directrix:

Eq. of Directrix:

6.
$$y = -\frac{1}{6}x^2$$

Focus:

Eq. of Directrix: