Algebra 2B Ch 10 Review Fall 2017

- 1. Write the equation of the parabola whose vertex is (0,0) and focus is (0,-4)
- 2. Write the equation of the parabola whose vertex is (0, 0) and directrix is x = -8
- 3. State the coordinates of the focus and the equation of the directrix for the parabola $y = 9x^2$
- 4. State the coordinates of the focus and the equation of the directrix for the parabola $x = -\frac{1}{7}y^2$
- 5. Write the equation of the parabola whose vertex is (5,-2) and focus is (5,8)
- 6. Write the equation of the parabola whose focus is (1,3) and directrix is x=5
- 7. State the coordinates of the vertex and focus and the equation of the directrix for the parabola $y = -3(x+4)^2 + 7$
- 8. State the coordinates of the vertices, co-vertices, and foci for the ellipse $\frac{x^2}{81} + \frac{y^2}{32} = 1$
- 9. State the coordinates of the center, vertices, co-vertices, and foci for the ellipse $\frac{(x-2)^2}{144} + \frac{(y+6)^2}{225} = 1$

Write the equation of each ellipse in 10 to 14

- 10. Foci are $(\pm 3,0)$ and co-vertices are $(0,\pm 7)$
- 11. Major axis is 20 units long and foci are $(0,\pm6)$
- 12. Center is (-9,3), a vertex at (-9,9) and whose minor axis is 8 units long.
- 13. Vertices are (1,-4) and (11,-4) and co-vertices are (6,-2) and (6,-6)
- 14. Foci are (-7,4) and (-7,-2) and with major axis 16 units long.
- 15. State the center and radius of this circle $x^2 + y^2 = 24$
- 16. State the center and radius of this circle $(x + 10)^2 + (y 13)^2 = 121$

Write the equation of each circle in 17 to 19

- 17. Center is (11,-2) and the point (5,-8) is on the circle.
- 18. Center is (0,8) with a radius of 16.
- 19. Diameter has the following endpoints: (-5,1) and (7,9)
- 20. State the coordinates of the vertices & foci & the slopes of the asymptotes for: $\frac{x^2}{81} \frac{y^2}{49} = 1$
- 21. Graph this hyperbola showing the vertices and asymptotes. $\frac{y^2}{4} \frac{x^2}{9} = 1$
- 22. Write the equation of the hyperbola whose foci are $(0,\pm7)$ and whose transverse axis is 10 units long.
- 23. Write the equation of the hyperbola with center at (0,0), asymptotes with slopes of $\pm \frac{8}{3}$, & horizontal transverse axis.
- 24. State the coordinates of the center, vertices, foci and slopes of asymptotes for this hyperbola:

$$\frac{(y+2)^2}{16} - \frac{(x+8)^2}{100} = 1$$

- 25. Write the equation of the hyperbola whose center is (2,-9) and a focus at (9,-9) and with a vertex at (5,-9).
- 26. Write the equation of the hyperbola whose Foci are (-7,16) & (-7,-6) with a Vertex at (-7,-3)
- 27 Write the equation of the Hyperbolas shown. See the back.

Algebra 2B

Ch 10 Review Fall 2017 ANSWERS

1.
$$y = -\frac{1}{16}x^2$$

2.
$$x = \frac{1}{32}y^2$$

3. Focus:
$$(0, \frac{1}{36})$$

Directrix:
$$y = -\frac{1}{36}$$

4. Focus:
$$(-\frac{7}{4},0)$$

Directrix:
$$x = \frac{7}{4}$$

1.
$$y = -\frac{1}{16}x^2$$
 2. $x = \frac{1}{32}y^2$ 3. Focus: $(0, \frac{1}{36})$ Directrix: $y = -\frac{1}{36}$ 4. Focus: $(-\frac{7}{4}, 0)$ Directrix: $x = \frac{7}{4}$ 5. $y = \frac{1}{40}(x-5)^2 - 2$

6. Vertex (3,3) so:
$$x = -\frac{1}{8}(y-3)^2 + 3$$

$$x = -\frac{1}{8}(y-3)^2 + 3$$

7. Vertex:
$$(-4,7)$$
 Focus: $(-4,\frac{83}{12})$ Directrix: $y = \frac{85}{12}$

Focus:
$$(-4, \frac{1}{12})$$

8. Vertices:
$$(\pm 9,0)$$
 Co – Vertices: $(0,\pm\sqrt{32})$ or $(0,\pm4\sqrt{2})$ Foci: $(\pm 7,0)$

9. Center:
$$(2,-6)$$
 Vertices: $(2,9)&(2,-21)$

$$Co-Vertices: (-10,-6)&(14,-6)$$
 Foci: $(2,3)&(2,-15)$

)
$$Foci: (2,3)&(2,-1)$$

10.
$$\frac{x^2}{60} + \frac{y^2}{40} = 1$$

11.
$$\frac{x^2}{64} + \frac{y^2}{100} = 1$$

10.
$$\frac{x^2}{58} + \frac{y^2}{49} = 1$$
 11. $\frac{x^2}{64} + \frac{y^2}{100} = 1$ 12. $\frac{(x+9)^2}{16} + \frac{(y-3)^2}{36} = 1$

13.
$$\frac{(x-6)^2}{25} + \frac{(y+4)^2}{4} =$$

13.
$$\frac{(x-6)^2}{25} + \frac{(y+4)^2}{4} = 1$$
 14. $\frac{(x+7)^2}{55} + \frac{(y-1)^2}{64} = 1$

15. Center:
$$(0,0)$$
 Radius = $\sqrt{24}$ or $2\sqrt{6}$ 16. Center: $(-10,13)$ Radius = 11

17.
$$(x-11)^2 + (y+2)^2 = 72$$
 18. $x^2 + (y-8)^2 = 256$

18.
$$x^2 + (y - 8)^2 = 256$$

19.
$$(x-1)^2 + (y-5)^2 = 52$$

19.
$$(x-1)^2 + (y-5)^2 = 52$$
 20. Vertices: $(\pm 9,0)$ Foci: $(\pm \sqrt{130},0)$ Slope: $\pm \frac{7}{9}$

$$21. \quad \frac{y^2}{4} - \frac{x^2}{9} = 1$$

22.
$$\frac{y^2}{25} - \frac{x^2}{24} = 1$$

22.
$$\frac{y^2}{25} - \frac{x^2}{24} = 1$$
 23. $\frac{x^2}{9} - \frac{y^2}{64} = 1$

Vertices:
$$(-8,2)$$
& $(-8,-6)$

24. Center:
$$(-8,-2)$$
 Vertices: $(-8,2)&(-8,-6)$ Foci: $(-8,-2\pm\sqrt{116})$ or $(-8,-2\pm2\sqrt{29})$

Slopes of Asymptotes $m = \pm \frac{4}{10}$ or $\pm \frac{2}{5}$

25.
$$\frac{(x-2)^2}{9} - \frac{(y+9)^2}{40} = 1$$

25.
$$\frac{(x-2)^2}{9} - \frac{(y+9)^2}{40} = 1$$
 26. $\frac{(y-5)^2}{64} - \frac{(x+7)^2}{57} = 1$

27. a)
$$\frac{x^2}{25} - y^2 = 1$$

27. a)
$$\frac{x^2}{25} - y^2 = 1$$
 b) $\frac{(y-1)^2}{16} - \frac{(x+2)^2}{9} = 1$